
Vol.:(0123456789)1 3

Requirements Engineering (2021) 26:255–271
https://doi.org/10.1007/s00766-020-00344-y

ORIGINAL ARTICLE

Automatically detecting feature requests from development emails
by leveraging semantic sequence mining

Lin Shi1,5 · Celia Chen2 · Qing Wang1,3,5 · Barry Boehm4

Received: 12 January 2020 / Accepted: 16 November 2020 / Published online: 30 March 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Mailing list is widely used as an important channel for communications between developers and stakeholders. It consists
of emails that are posted for various purposes, such as reporting problems, seeking help in usage, managing projects, and
discussing new features. Due to the intensive amount of new incoming emails every day, some valuable emails that intend
to describe new features may get overlooked by developers. However, identifying these feature requests from development
emails is a labor-intensive and challenging task. In this paper, we propose an automated solution to discover feature requests
from development emails by leveraging semantic sequence patterns. First, we tag sentences in emails by using 81 fuzzy rules
proposed in our previous study. Then we represent the semantic sequence with the contextual information of an email in a
2-g model. After applying sequence pattern mining techniques, we generate 10 semantic sequence patterns from 317 tagged
emails that are randomly sampled from the Ubuntu community. We also conduct an empirical evaluation of their capability
to discover feature requests from massive emails in Ubuntu and other four open source communities. The results show that
our approach can effectively identify feature requests from these emails. Compared to existing baselines, our approach can
achieve a better performance in terms of precision, recall, F1-score, AUC, and positive, with the average precision and recall
for discovering feature requests from emails being 76% and 86%, respectively.

Keywords Requirements discovery · Requirements analysis · Text mining · Feature requests

1 Introduction

Obtaining a sufficient number of requirements is crucial in
software development as it increases the opportunity to gain
market share and secure more customers. To achieve that
goal, traditional RE approaches typically select a limited
number of stakeholders and crowd representatives to col-
lect user requirements [21]. In the past decades, there has
been a massive increase in global collaboration via online
platforms, such as Github and JIRA. The large number of
stakeholders makes the traditional activities of require-
ments gathering and analyzing extremely costly and time-
consuming, and thus, these approaches miss the opportunity
to continuously involve large groups of users who express
their feedback or feature requests through a variety of media.
The new trend is now shifting toward the CrowdRE, which
focuses on automation or semi-automation of the require-
ments gathering process so that validated user requirements
can be derived from a crowd [22].

Currently, mailing-lists act as one of the most frequently
used communication channels that enable users to easily

 * Qing Wang
 wq@iscas.ac.cn

 Lin Shi
 shilin@iscas.ac.cn

 Celia Chen
 qchen2@oxy.edu

 Barry Boehm
 boehm@usc.edu

1 Laboratory for Internet Software Technologies, Institute
of Software Chinese Academy of Sciences, Beijing, China

2 Department of Computer Science, Occidental College,
Los Angeles, USA

3 State Key Laboratory of Computer Science, Institute
of Software Chinese Academy of Sciences, Beijing, China

4 Center for Systems and Software Engineering, University
of Southern California, Los Angeles, USA

5 University of Chinese Academy of Sciences, Beijing, China

http://orcid.org/0000-0003-1476-7213
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-020-00344-y&domain=pdf

256 Requirements Engineering (2021) 26:255–271

1 3

submit feature requests and greatly improve the efficiency
for organizations when gathering new ideas. For example, in
the Ubuntu community, there are 24 among 358 mailing lists
that are designated for user feedback [16]. However, there
are challenges to gather and analyze these feature requests.

First, the volume of emails can be very large, and it is
easy for developers to miss any requested features when they
get lost in other unnecessary contents [54]. For example,
apart from other active communication channels, the Ubuntu
community has around 4000 daily incoming emails from its
mailing-lists [16]. We randomly selected 507 emails from
one of the Ubuntu mailing-lists for users and found that 116
of them were feature requests, but only a few of them were
recorded and traced in the issue tracking system. Develop-
ers contribute to the open source communities under the
burden of daily programming tasks as well as a massive
amount of incoming emails. In such a situation, emails that
are requesting new features are likely to be ignored, which
has been confirmed by existing research. Guzzi et al. [23]
reported that core developers participate in less than 75% of
the threads in mailing-lists, and only 54% of emails suggest-
ing features get processed.

The second challenge is that emails in the mailing-lists
may relate to a variety of topics. For example, some emails
may be posted for user complaints, bugs, or feature requests
[7], while some emails may be posted for opinion asking
or information seeking [52]. Moreover, Herzig et al. [25]
and Antoniol et al. [5] found that over 30% of all user feed-
back are misclassified in issue tracking systems (i.e., rather
than referring to a new feature, they resulted in an update of
documentation, or a code fix). Hence, defining an enforced
rule that any email proposing a feature must include a tag
‘Feature Request’ might also not help, but result in a number
of invalid user requirements. To identify user requirements
from emails, developers have to read through all the emails
carefully and separate feature requesting emails from other
emails, which will inevitably increase their workload.

In this paper, we propose an automated solution to dis-
cover feature requests from massive textual emails. First, we
classify sentences in the emails into six categories: Intent,
Benefit, Drawback, Example, Explanation, and Trivia. These
categories represent the semantic meanings by leveraging 81
fuzzy rules proposed by Shi et al. [50]. Second, we trans-
form the emails into the semantic sequences based on the
classification results. By mining the sequences, we identify
semantic sequence patterns that can indicate feature requests
from development emails. Ten semantic sequence patterns
are reported, and we conduct an empirical evaluation toward
their capability to discover feature requests from massive
emails in Ubuntu and other four open source communities.
The results show that our approach can effectively identify
feature requests from these emails. Compared to five existing

baselines, our approach has a better performance in terms of
precision, recall, F1-score, AUC, and positive.

The major contributions of this paper are as follows.

• We propose an automated solution to discover feature
requests from a large volume of development emails by
providing 10 semantic sequence patterns that can achieve
satisfying performance under different business objec-
tives.

• We conduct an empirical evaluation on Ubuntu and
four other open source communities to discover feature
requests from a large volume of development emails. The
results conform to the generalizability and usability of
the proposed approach.

• We provide publicly available tools (FRAD) and dataset
to replicate our experiments.1

The remainder of the paper is organized as follows. Sec-
tion 2 elaborates on the approach. Section 3 presents the
experimental setup. Section 4 describes the results and anal-
ysis. Section 5 discusses the implications and future work.
Section 6 shows the threats to validity. Section 7 introduces
the related work. Section 8 concludes our work.

2 Approach

Our approach is inspired by Shi et al.’s research [49] about
automated analysis on the contents of feature requests. They
proposed 81 fuzzy rules that can classify textual sentences
into six semantic tags (i.e., Intent, Benefit, Drawback, Exam-
ple, Explanation, and Trivia). By providing the tagged con-
tents, one can understand and analyze the requirements in
an efficient way. Our work takes advantage of the tagged
contents, and mines the sequences of sentence tags to learn
common expressing patterns in feature requests, which can
be used to identify feature requests from any textual medi-
ums, such as Github and online reviews.

The process of our approach is illustrated in Fig. 1. First,
we tag sentences in the emails into six tags according to the
81 fuzzy rules proposed by Shi et al. [49]. After that, we
generate the corresponding semantic sequences for emails.
Then we apply sequence patterns mining algorithm to dis-
cover candidate feature request semantic patterns. We use
Fn-score as the optimization function to output the final
semantic sequence patterns, which can be used to distinguish
feature requests emails from other types of emails.

1 http:// 39. 104. 76. 212: 8082.

http://39.104.76.212:8082

257Requirements Engineering (2021) 26:255–271

1 3

2.1 Generate semantic sequences

To generate the semantic sequence for each email, we
first classify sentences in the emails into six semantic
categories based on Shi et al.’s previous work [49]. The
six categories are defined in Table 1. We utilize the API
service provided by Shi et al., which automatically returns
the tagging results for a given text. Second, we generate
concise semantic sequences and transform them into 2-g
semantic sequences. Finally, we transform the 2-g seman-
tic sequences into natural numbers for sequence mining.

Given an email with tags, we can obtain all the sentence
categories in the order of the expressing sequence. Tak-
ing the email in Fig. 1 as an example, we can obtain its
expressed sequence: {trivia, intent, explanation, explana-
tion, benefit, intent, trivia}.

To keep the sequence concise, we adjust the original
expressing sequence with the following steps:

• Excluding sentences with ‘trivia’ tags.
• Combining the same consecutively repeating tags.
• Adding Start(S) and End(E) tags.

Given n sentences, we generate the simplified semantic
sequences as follows:

where ti is the semantic category of sentence i, S denotes
the starting of an email, and E denotes the ending. In this
work, the number of semantic categories is 5 after ignoring
the trivia category. Therefore, after adjusting the original
expressing sequence, the concise semantic sequence of the
given example is S, intent, explanation, benefit, intent, E.

In order to capture the contextual information of each sen-
tence in the email, we leverage the N-gram model to repre-
sent the semantic sequences of each sentence. N-gram model
is a contiguous sequence of n items from a given sample of

(1)Q = {S, t1, t2,… , tn,E}

Fig. 1 The approach overview

Table 1 Definitions of sentence categories

Category Importance Definition

Intent 1 Descriptions about ideas, needs, or expectations to improve the system and its functionalities
Benefit 2 Descriptions about good or helpful results or effects that the proposed feature will deliver
Drawback 3 Descriptions of disadvantages or the negative parts of the current system behavior
Example 4 Descriptions of examples or references in support of the proposed feature
Explanation 5 Detailed information about the current behavior, scenarios, or solutions related to the proposed feature
Trivia 6 Other information that are not related to the proposed feature nor the system

258 Requirements Engineering (2021) 26:255–271

1 3

text, which is widely used in natural language processing
[46] and biological sequence analysis [13] . In this study, we
use 2-g model to represent the concise semantic sequences
because of the following two reasons: (1) it records more
context information and can retain the relationship between
neighbor semantic categories [12]; (2) it enables the experi-
ments to scale up efficiently [42].

The 2-g model of Q is defined as follows.

To perform sequence mining on the 2-g model, we further
transform the sequence of tag-pairs into the sequence of
natural numbers. Since we combine the same consecutively
tags, the two tags appear in one pair will not be identical.
Thus, given m different categories used in semantic sequence
analysis, there will be P2

m
 , which is (m2 − m) pairs of ⟨ti, tj⟩ .

After adding m pairs that start with S and m pairs that end
with E, the total number of pairs is P2

m
+2 × m , which is

m × (m + 1).
In this work, there are 5 different tags (m = 5), and there

are 30 different pairs, which means that there will be 30
available combinations as units in the transformed 2-g
semantic sequences.

To simplify the data presentation and apply the sequence
mining algorithm, we use the natural number of the 2-g
model combinations to represent the semantic sequence.
Taking the semantic sequence Q

�
={S, intent, expression,

benefit, intent, E} in Fig. 1 as an example, the 2-g model
Bigram(Q

�
) is {<S, intent >, <intent, expression>, <expres-

sion, benefit>, <benefit, intent>, <intent, E>}. The order of
<S, intent >e is 1 among the 30 available combinations, the
order of <intent, expression> is 9, and so on. Therefore, the
semantic sequence of Q

�
 is {1, 9, 23, 10, 26}.

2.2 Mining semantic sequence patterns

The semantic sequences of development emails consist of
the numbers that denote the tag-pairs. The sequence of the
numbers could reflect the expressing logic in the emails.
Finding the frequently occurring sequential patterns in the
semantic sequence of feature-request emails can reveal
knowledge about common expressing logic when people
describe desired features.

(2)Bigram(Q) = {⟨S, t1⟩, ⟨t1, t2⟩, ⟨t2, t3⟩,… , ⟨tn,E⟩}

Since sequential pattern mining is a topic of data min-
ing that concerns with finding statistically relevant patterns
[51], we can extract frequent patterns by applying sequen-
tial pattern mining on the semantic sequences of develop-
ment emails. Many sequential pattern mining algorithms
have been proposed [40, 53, 56]. In our study, we select the
widely used apriori-based algorithm: Generalized Sequential
Pattern (GSP) algorithm [53].

The process of mining semantic sequence patterns is
presented in Algorithm 1. We break it down into two steps.
First, we apply the GSP sequential pattern mining algo-
rithm on the emails that are labeled as feature requests to
find frequent semantic sequences. Each frequent semantic
sequence comes with its corresponding support value and
confidence value. The support and confidence measure-
ments are typically used in data mining to evaluate rule-
based classifiers [2]. In our study, we use support and con-
fidence to help us select semantic sequence patterns. We
select those frequent semantic sequences with support over
0.1 as the semantic sequence patterns candidates. Second,
we calculate the confidence of each semantic sequence
pattern candidate among all the dataset, and rank the
candidates by the values of confidence. We use Fn-score
as the optimization function to output the final seman-
tic sequence patterns for the ith dataset. F1-score is also
known as the harmonic mean of the precision and recall
[41]. The ‘ Fn-score_HP ’ in Eq. (3) is defined for ‘High
Precision’ objective, which means that the higher value
of n, the higher weight of precision. For ‘High Recall’
objective, we simply exchange the position of precision
and recall as shown in the definition of ‘ Fn-score_HR ,’ and
increase the weight of recall by enlarging the value of n.

Patterns are selected as final patterns only if the Fn-score
does not decline when they are included. By tuning the value
of n, we can generate optimal semantic sequence patterns for
different business objectives. For example, patterns gener-
ated by n = 10 will output rules that aim to be more precise
than the patterns generated by n = 1.

(3)
Fn-score_HP =

(n + 1) × Precision × Recall

Precision + n × Recall

Fn-score_HR =
(n + 1) × Recall × Precision

Recall + n × Precision

259Requirements Engineering (2021) 26:255–271

1 3

2.3 Discover feature requests from texts
by semantic sequence patterns

In Sect. 2.2, we have generated a set of final semantic
sequence patterns. When applying these patterns to dis-
cover feature requests from new incoming emails, the
following steps need to be taken. First, based on their
business objectives, users need to choose the correspond-
ing pattern from the generated patterns. For example, if
the business objective is ‘The prediction results should
be highly precise,’ then the user should select the pat-
terns with a higher weight of Fn-score_HP. If the busi-
ness objective is ‘The prediction results should recall more
actual feature requests,’ then the user should select the
patterns with the higher weight of Fn-score_HR. Second,
when a new email is coming, we automatically obtain the
semantic sequence by applying the same data processing
procedure. Third, we compare the semantic sequence of
the new email with the specified pattern. The specified
pattern is like the ‘DNA’ of feature requests. If the given
semantic sequence includes the full sequence of the speci-
fied pattern, then the corresponding email is predicted to
be a feature request. Finally, our approach outputs the pre-
diction result as well as the probability.

To illustrate the application of the semantic sequence
patterns, we take the daily work of a release team mem-
ber Adam, who aims to monitor and analyze potential new
requirements, as an example. Suppose Adam would like to
search only a limited number of feature requests from emails
due to his tight schedule. He chooses the semantic sequence
pattern P5 ([1 26, 13 17 22]) with the highest precision
objective to help him discover a more accurate prediction on
feature request email. When analyzing the email in Fig. 1, we
can find that its semantic sequence is Q

�
= {1, 9, 23, 10, 26}

as explained in Sect. 2.1. Then we compare P5 with Q
�
 , and

we notice that Q
�

 contains the sequence of [1 26], which
is one of the feature-request semantic sequences defined in
P5. Therefore, we consider the Q

�
 matches with P5, and we

recommend the incoming email as a feature request to Adam
for further analysis.

2.4 Tools support: feature request analyzer
and detector (FRAD)

Based on the proposed approach, we implement an automati-
cally Feature Request Analyzer and Detector (FRAD) online
system that can identify feature requests from emails. Given
a raw email and the selected pattern, FRAD will first auto-
matically tag each sentence by using the API service pro-
vided by Shi et al. [49]. Second, FRAD generates the seman-
tic sequence for the given email as illustrated in Sect. 2.1.
Third, FRAD will match the semantic sequence with the
selected pattern. Only if the semantic sequence contains the
selected pattern, the given email will be predicted as a fea-
ture request. More details can be found on our project site:
http:// 39. 104. 76. 212: 8082/.

3 Experimental setup

In order to evaluate the effectiveness of our approach, three
research questions are proposed in Sect. 3.1. To answer our
research questions, we select and preprocess a set of open
source projects in Sects. 3.2 and 3.3. In Sect. 3.4, we intro-
duce measurements that are designed to evaluate the perfor-
mance of the semantic sequence patterns. Then, we describe
a detailed experiment design in Sect. 3.5.

3.1 Research questions

In our study, we investigate the performance of our approach.
Specifically, the experiment aims at addressing the following
research questions:

RQ1 (Effectiveness) Can the proposed approach effec-
tively discover feature requests from emails in the Ubuntu
community? This research question aims at investigating the
kind of the semantic sequence patterns that can be generated

http://39.104.76.212:8082/

260 Requirements Engineering (2021) 26:255–271

1 3

from the Ubuntu training dataset, and to what level the cor-
responding performances of these patterns can achieve on
Ubuntu testing dataset.

RQ2 (Generalizability) Can the semantic sequence
patterns mined from Ubuntu community work well on other
projects? In RQ1, we train the semantic sequence patterns
from Ubuntu training dataset, and evaluate in the Ubuntu
testing dataset. However, it is arguable whether the semantic
sequence patterns trained from Ubuntu project can apply to
other projects. This research question aims to alleviate that
concern by applying the semantic sequence patterns to other
open source projects, and analyzes the performances.

RQ3 (Advantage) How can the proposed approach
perform when compared to the state-of-the-art approaches
in identifying feature requests from emails? This research
question aims at comparing the performances of generated
patterns with the existing approaches in terms of precision,
recall, f1-score, AUC, and positive.

3.2 Subject projects

Ubuntu is an open source operating system software based
on the Debian architecture. It is one of the distribution sys-
tems of Linux. Ubuntu has been releasing updated versions
nearly every six months since its initial release in 2004.
It has a large community with lots of active contributors
internationally; thus there are a large quantity emails that
are created and exchanged in its mailing lists. Due to the
long history with consistent releases and a large volume of
emails, we take the mailing lists of the Ubuntu community
as the training dataset. In order to evaluate the performances
as well as examine the generalizability of our approach, we
conduct cross-project validation on emails of four open
source projects from both Apache and Eclipse communities:
Activemq, Aspectj, HDFS, and Jetty. All the mailing list dis-
cussions among developers are archived on Ubuntu Mailing
lists [16] since December 2006. In our study, we chose one
of the mailing lists Ubuntu-devel-discuss [17] that is des-
ignated for communications between users and developers.

3.3 Data preparation

3.3.1 Data filtering

Typically, messages in the mailing list are organized in the
form of threads. Developers first launch a mailing list thread
by posting a head email that is for discussion, and then other
developers reply to the same thread to share ideas, informa-
tion, or suggestions. When preparing data for feature request
discovery, we first collect the head emails from mailing list
threads. We collect 4204 raw head emails in the Ubuntu-
devel-discuss mailing list threads from December 2006 to
July 2017. Typically the head email contains new ideas,
questions, or requests, and follows by a series of further
discussions. We ignore those threads that started with replies
to other threads. After threads selection, we end up with
3434 head emails as our input data.

To conduct cross-project validation, we also select four
popular open source projects from both Apache and Eclipse
communities: ActiveMQ, AspectJ, HDFS, and Jetty . We tar-
get the mailing lists for users, and collect head emails from
threads posted from the project creation time to Dec 2017.
We randomly sample 100 emails out for each project as the
testing dataset, and manually exclude unreadable emails:

• Emails that are written in non-English languages;
• Most of the emails are code or stack traces;
• Low-quality emails such as emails with many typos and

grammatical errors.

The details of selected emails are shown in Table 2, and the
last column ‘FRs’ denotes the number of feature requests.

3.3.2 Sampling

As labeling emails into the feature-request class or non-fea-
ture-request class requires thoroughly reading the textual
contents, it involves heavy human resources during the labe-
ling activity. Limited by the labeling resources, we perform
an incremental iterative sampling strategy to prepare the
dataset from the 3434 head emails taken from the Ubuntu
community.

The incremental iterative sampling strategy includes
three steps: (1) We randomly sample x percent of total
emails without replacement that can be labeled within
a limited cost, and define as dataset Si ; (2) we mine the
semantic sequence patterns Pi from the united dataset ⋃

i=1 Si ; (3) we compare the similarity between Pi−1 and
Pi . If the similarity is over 80%, then we consider the Pi is
representative and stop the sampling process. Otherwise,
we repeat the process from the first step.

Table 2 Cross-project validation subjects

a http:// mail- archi ves. apache. org/ mod_ mbox/ activ emqus ers
b http:// dev. eclip se. org/ mhona rc/ lists/ aspec tjuse rs
c http:// mail- archi ves. apache. org/ mod_ mbox/ hadoop- hdfs- user
d https:// accou nts. eclip se. org/ maili ng- list/ jetty- users

Project Commu-
nity

Mailing list Emails Samples FRs

Activemq Apache Activemq-usersa 2996 99 19
Aspectj Eclipse Aspectj-usersb 3232 100 24
HDFS Apache Hadoop-hdfs-userc 2330 95 26
Jetty Eclipse Jetty-usersd 1604 100 18

http://mail-archives.apache.org/mod_mbox/activemqusers
http://dev.eclipse.org/mhonarc/lists/aspectjusers
http://mail-archives.apache.org/mod_mbox/hadoop-hdfs-user
https://accounts.eclipse.org/mailing-list/jetty-users

261Requirements Engineering (2021) 26:255–271

1 3

The similarity of two sets of semantic sequences pat-
terns Qi and Qj is the proportion of their intersection ele-
ments over the size of Qj . Note that we define the inter-
section of Qi and Qj as the set of elements of Qj that are
the subset of elements in Qi.

In this study, we randomly sample 2% emails (around
70 emails) for each iteration according to our limited
labeling resource. After 4 iterations, we obtain the repre-
sentative patterns for the Ubuntu community. Moreover,
to validate the patterns in a more comprehensive way,
we build nearly the same amount of data for testing. As
a result, we have 259 emails for training and 248 emails
for testing as shown in Table 3.

3.3.3 Label ground‑truth emails

We labeled emails that are used as the ground-truth data-
set for method definition and performance evaluation.
To guarantee the correctness of the labeling results, we
built an inspection team, which consisted of two sen-
ior researchers with seven Ph.D. candidates and three
senior developers. All of them either have done inten-
sive research work with software development or have
been actively contributing to open source projects. We
divided the team into two groups. Each group consisted
of a leader (senior researcher) and five members. The
leader trained members on how to label and provided
consultation during the process. The labeling results
from the members were reviewed by the leader, while
results from the leaders were reviewed by other leaders.
We accepted and included emails to our dataset when the
emails received full agreement among the groups. When
an email received different labeling results, we hosted a
discussion with all the 12 people to decide through vot-
ing. If the majority of people vote for a particular class
(i.e., feature-request class or non-feature-request class),
then we labeled the email with the class that was sup-
ported by the majority.

(4)Similarity(Qi,Qj) =
|Qi ∩ Qj |

|Qj |

3.4 Evaluation measurements

In order to evaluate whether the generated seman-
tic sequence patterns can effectively identify feature
requests from new incoming emails, we use five meas-
urements to evaluate the prediction performance: preci-
sion, recall, F1-score, positive, and AUC.

Precision, recall, and F1-score are commonly used
measurements for performance assessment in classifica-
tion tasks [41]. Precision represents the proportion of
items labeled as belonging to class C that indeed belong
to C. Recall represents the proportion of items from class
C was labeled as belonging to Class C. The F1-score is
the weighted average of precision and recall.

Positive [47] is defined as the proportion of the items
labeled as belonging to class C among all the labeled
ones, where TP, FP, TN, and FN represent for true posi-
tive, false positive, true negative, and false negative,
respectively. In our study, the positive measurement can
reflect the proportion of emails that are predicted to be
feature requests. When a further analysis of the predic-
tion results is required, this measurement can indicate
the effort of such an analysis on the prediction results.

Area under ROC curve (AUC) is the area of the two-
dimensional graph in which false positive rate is plot-
ted on the X axis and true positive rate is plotted on
the Y axis [20]. AUC can avoid performance inflation
when evaluating on imbalanced data. The AUC value
varies between 0 and 1, and higher values indicate better
performance.

3.5 Experiment design

This section describes the designs of the experiments
in detail.

Experiment I (Effectiveness) In this experiment,
we first obtain the semantic sequence patterns for differ-
ent optimization objectives from the Ubuntu training data-
set. Then, we conduct within-project validation for those
obtained patterns on the testing dataset from the Ubuntu pro-
ject. There are two types of predefined business objectives:

• Objectives for achieving high precision: According
to Eq. (4), we gradually increase the weight n of Fn-
score_ HP from 1 to 10 to achieve high precision objec-
tives.

(5)Positive =
TP + FP

TP + FN + TN + FP

Table 3 Ubuntu train and test dataset

Dataset # Emails # FRs #Sentences

Train 1 65 20 625
2 132 33 1327
3 197 43 2039
4 259 65 2717

Test 1 248 51 2497

262 Requirements Engineering (2021) 26:255–271

1 3

• Objectives for achieving high recall: We gradually
increase the weight n of Fn-score_HR from 2 to 10 to
achieve high recall objectives.

For each optimization objective, we use the GSP algorithm
to mine its corresponding stable semantic sequence patterns
on the five prepared training datasets incrementally. For each
distinct stable semantic sequence pattern, we apply it on the
testing dataset with 248 emails from the Ubuntu project, and
observe the five measurements for prediction performance.

Experiment II (Generalizability) To address RQ2, we
conduct cross-project validation for the obtained semantic
sequence patterns on other open source projects (activemq,
aspectj, hdfs, and jetty). After preparing the 4 testing data-
set from the open source projects, we apply the semantic
sequence patterns obtained in RQ1 on each testing dataset
to predict whether emails are feature requests or not, and
observe the five measurements for prediction performance.

Experiment III (Advantage) To compare the obtained
semantic sequence patterns with the existing approaches, we
selected DECA [18], which is the state-of-the-art approach
for analyzing development emails content. It is used to clas-
sify the sentences of emails into feature request, opinion ask-
ing, problem discovery, solution proposal, information seek-
ing, and information giving by using linguistic rules. Since
the dataset provided by DECA is processed into numeric
vectors2 rather than the original textual emails, we cannot
apply our approach on DECA dataset directly. Therefore,
we apply DECA to the five testing dataset (i.e., Ubuntu_test,
activemq, aspectj, hdfs, and jetty). We use the java API pro-
vided by DECA3 to annotate the emails, and defined the
emails that contain sentences that are predicted to be ‘feature
request’ as feature request emails.

We select four representative machine learning
approaches including Naive Bayes, J48, Logistic Regres-
sion, and SVM [43] to build classifiers from the 259 training
dataset, and reported performances on the testing dataset,
including the Ubuntu testing dataset and the four testing
dataset from activemq, aspectj, hdfs, and jetty. We processed
the training and testing dataset by applying vector format,
STOP word filter, and TF-IDF weights to represent emails
[44].

Moreover, we implement two deep learning approaches,
TextCNN [29] and TextRNN [32] models by using the Keras
framework. To obtain better performance, we use the grid
search [11] method to tune the hyperparameters. In the
word embedding layer of the model, the dimension of the
word vector is 50 and the input length is 200. For TextCNN
model, we set 3 different convolution kernel sizes which are
3, 4, and 5, respectively. For TextRNN model, we use the

LSTM layer and set the number of hidden layer neurons to
128. To prevent overfitting, we set the dropout to 0.5 drop
rate. We use Adam as the optimizer and cross-entropy as the
loss function. In addition, we set the batch size to 8, meaning
that it takes 8 data samples per training. We also set epochs
to 50 and patience to 10, meaning that the entire training
process needs 50 epochs, but when the performance on the
validation set did not improve for 10 epochs, the process
will be stopped.

4 Results and analysis

This section reports the analysis of the results achieved aim-
ing at answering our research questions.

4.1 Answering RQ1 (effectiveness)

By applying the proposed approach on the Ubuntu training
dataset, we obtained 10 different semantic sequence pat-
terns over 19 weights of F_n-score for different objective
types. We define them as P1 to P10, respectively, where
P1 is patterns for the regular F_1-score, P2–P5 are for high
precision objectives, and P6 to P10 are for high recall objec-
tives. Some semantic sequence patterns can meet multiple
objectives at the same time from observing the 19 stable
patterns. For example, P4 can meet the high precision
objectives on weight between 5 and 8 as shown in Table 4.
‘Trained Emails’ column represents the number of emails
used for training stable patterns. We can see that except P2,
all the other patterns become stable at the 3rd Ubuntu train-
ing dataset with 197 emails, which means that the proposed
approach can obtain stable patterns on the Ubuntu training
dataset quickly. ‘Semantic Sequence Patterns’ column repre-
sents the semantic sequence patterns that are mined by GSP
from the training dataset. We append the bigram format of
the semantic sequence patterns in the last column for more
information.

To assess the performances of the 10 patterns, we apply
these patterns on the Ubuntu testing dataset, which contains
248 new emails. We group the performances into a high
precision patterns group and a high recall patterns group
as shown in Figs. 2 and 3. The bar graphs in Figs. 2 and 3
denote the number of elements in each pattern. We can see
that as the weights increase, the number of elements in the
high precision patterns becomes smaller, and the number
of elements in the high recall patterns becomes larger. The
highest precision pattern P5 has 2 elements, and the highest
recall pattern P10 has 11 elements.

2 https:// www. ifi. uzh. ch/ dam/ jcr: 00000 000- 14e5- 028d- ffff- ffffa ffc5e
6c/ Repli catio npack ageDE CA. zip.

3 https:// www. ifi. uzh. ch/ dam/ jcr: 00000 000- 5b34- b3d9- 0000- 00004
910bd 8d/ DECA_ API. zip.

https://www.ifi.uzh.ch/dam/jcr:00000000-14e5-028d-ffff-ffffaffc5e6c/ReplicationpackageDECA.zip
https://www.ifi.uzh.ch/dam/jcr:00000000-14e5-028d-ffff-ffffaffc5e6c/ReplicationpackageDECA.zip
https://www.ifi.uzh.ch/dam/jcr:00000000-5b34-b3d9-0000-00004910bd8d/DECA_API.zip
https://www.ifi.uzh.ch/dam/jcr:00000000-5b34-b3d9-0000-00004910bd8d/DECA_API.zip

263Requirements Engineering (2021) 26:255–271

1 3

In Fig. 2, the values of F1-score sharply decline after P2,
while the values of AUC remain stable, which only slightly
decline from 70 to 60%. Since AUC measures the accuracy
of a classifier on all classes, we consider that all the five
patterns can reach a relatively good accuracy on classify-
ing feature requests from emails. The values of positive
decline from 18 to 1%, which means the proportion of posi-
tive predictions over the whole test dataset is reducing. The
precision is gradually increasing from 59 to 100% (slightly
decline at P4), while the values of recall reduce from 51 to
4%. Taking the five measurements into consideration, we
can see that as the weights increase, the trained patterns
become more focused on a certain type of expressing logic.
They can only recall a small proportion of actual feature
requests, but the predicted emails are very likely to be actual

feature requests, while the accuracy level of both sides can
remain stable.

Figure 3 shows the performances of patterns generated by
high recall objectives. By raising the weights of recall, the
recall of the generated patterns increases from 53 to 73%,
and the precision reduces from 50% to 26%. The values of
AUC remain stable. They only slightly decline from 73 to
64%, which indicates a relatively good accuracy on clas-
sifying feature requests from emails. Taking the five meas-
urements into consideration, we can see that as the weights
increase, the trained patterns are likely to include more
types of expressing logics. Although the precision turns to
lower values, the patterns can recall most of the real feature
requests, while the accuracy level of both sides can remain
stable.

Table 4 Details of the 10 semantic sequence patterns

Objective type ID Weight Trained emails Semantic sequence patterns Semantic sequence patterns in bigram

 High precision P1 1 197 [1, 6, 10, 2] {<S,intent>},{<intent,benefit>},{<benefit,intent>
},{<S,benefit>}

P2 2 259 [1, 6, 10, 2 30] {<S,intent>},{<intent,benefit>},{<benefit,int
ent>}, {<S,benefit>,<exp,E>}

P3 [3, 4] 197 [1 26, 1 17, 6, 10] {<S,intent>,<intent,E>},
{<S,intent>,<drawback,exp>}, {<intent,benefit
>},{<benefit,intent>}

P4 [5, 8] 197 [1 26, 1 17 22, 10] {<S,intent>,<intent,E>},
{<S,intent>,<drawback,exp>, <exp,intent>},
{<benefit,intent>}

P5 [9, 10] 197 [1 26, 13 17 22] {<S,intent>,<intent,E>},
{<S,intent>,<drawback,exp>, <exp,intent>}

High Recall P6 2 197 [1, 6, 10, 18, 2] {<S,intent>},{<intent,benefit>},
{<benefit,intent>}, {<example,intent>},{<S,b
enefit>}

P7 3 197 [1, 6, 10, 18, 2, 9 24, 22 26] {<S,intent>},{<intent,benefit>},{<benefit,int
ent>}, {<example, intent>},{<S,benefit>},
{<intent,exp>,<exp,drawback>},
{<exp,intent>,<intent,E>}

P8 4 197 [1, 6, 10, 18, 2, 26, 8, 9 24, 17 22, 13] {<S,intent>},{<intent,benefit>},
{<benefit,intent>}, {<example,
intent>}, {<S,benefit>},{<intent,E>},
{<intent,example>},
{<intent,exp>,<exp,drawback>},
{<drawback,exp>,<exp, intent>},
{<benefit,exp>}

P9 [5, 7] 197 [1, 6, 10, 18, 2, 26, 27, 8, 9 24, 17 22, 13] {<S,intent>},{<intent,benefit>},
{<benefit,intent>}, {<example,
intent>}, {<S,benefit>},{<intent,E>},
{<benefit,E>},{<intent, example>},
{<intent,exp>,<exp,drawback>},
{<drawback,exp>,
<exp,intent>},{<benefit,exp>}

P10 [8, 10] 197 [1, 6, 10, 18, 2, 26, 27, 8, 24, 17 22, 13] {<S,intent>},{<intent,benefit>},{<benef
it,intent>}, {<example, intent>},{<S,b
enefit>},{<intent,E>}, {<benefit,E>},
{<intent, example>},{<exp,drawback>},
{<drawback,exp>,<exp,intent>},
{<benefit,exp>}

264 Requirements Engineering (2021) 26:255–271

1 3

Summary The Although P5 can achieve 10 patterns
mined from the Ubuntu train dataset can effectively classify
new emails in the Ubuntu-test dataset that they can reach the
average level of precision and recall at 74% and 64%, with
an overall accuracy of 69%.

4.2 Answering RQ2 (generalizability)

Since we use emails from the same project to evaluate the
performance in RQ1, there may exist generalization issues
that the high level of precision and recall only exists in the
Ubuntu project. To investigate whether the obtained seman-
tic sequence patterns can also apply to other projects, we
further extend the testing dataset by including four other
open source projects as introduced in Table 3.

Figure 4 shows the performances on the four other
open source projects, along with the performance on the
Ubuntu test dataset. We highlight the patterns that can
achieve relatively good performances. For high predic-
tion patterns (P1–P5), we can see that performances on

the four new open source projects are similar or even
better than the Ubuntu-test dataset, where Jetty has bet-
ter performance than the Ubuntu testing dataset among
Precision, Positive, and AUC. Considering the five pat-
terns, P2 might be a better trade-off choice for high
precision purpose. Both AUC and F1-score are sharply
declining after P2, but the values of precision except Jetty
remain slightly changed after P2. For high recall patterns
(P6–P10), we can see almost all the four new projects
achieve better performances than the Ubuntu testing data-
set. We consider that P7 might be a better trade-off
choice for high recall objective. The values of AUC and
F1-score on most projects largely declined after P7, but
the values of recall increase slowly.

We also observe that the patterns achieve good perfor-
mances on the Ubuntu test dataset, as well as the other
four projects. Moreover, the patterns achieve even bet-
ter results in terms of precision, recall, and F1-score on
the other four projects. For example, the Jetty project
achieves almost the best performances in all the metrics,
which indicates that contributors are likely to use certain
semantic sequences when expressing feature requests.
This phenomenon confirms that the patterns mined from
the Ubuntu community can also work well on other tex-
tual resources. We can also infer that, even though there
are wide cultural diversities in a large open source com-
munity, contributors are likely to follow some common
patterns when describing feature requests in emails.

Summary The patterns trained from the Ubuntu data-
set are also suitable for other projects. The average of
precision for high prediction patterns among the four new
testing dataset is 77%, and the average of recall for high
recall patterns is 91%, which confirms that contributors
from the different community are likely to follow similar
patterns when expressing feature request in emails.

4.3 Answering RQ3 (advantage)

In this section, we build prediction models with seven differ-
ent existing classification approaches, and use these models
to discover feature requests in the five testing dataset. We
compare their performances with our extracted patterns. All
the learning-based approaches are trained from the Ubuntu
training dataset except DECA. DECA uses linguistic rules
that are already built from other projects, which does not
have any training process.

Figure 5 illustrates the max, min, and mean performances
of the seven classification approaches on testing projects.
For precision, we can see that the high-precision patterns
(i.e., P1–P5) significantly outperform the other baselines.
P3, P4, and P5 have the highest precision results, while most
of the learning-based approaches and DECA are below 50%.
For recall, we can see that the high-recall patterns could

Fig. 2 Performance of ‘high precision’ patterns on non-fitted Ubuntu
testing dataset

Fig. 3 Performance of ‘high recall’ patterns on non-fitted Ubuntu
testing dataset

265Requirements Engineering (2021) 26:255–271

1 3

Fig. 4 Performance for patterns on cross-projects

Fig. 5 Performance comparison between semantic sequence patterns and other approaches

266 Requirements Engineering (2021) 26:255–271

1 3

achieve high recall values among most of the five projects.
Meanwhile, P1 and P2 could also achieve relatively good
results. DECA and six learning-based approaches are mostly
below 60%. For F1-score, P1, P2, P6, P7, P8, and P9 are
higher than other approaches. For positive, we can see that
P3, P4, and P5 could reach the lowest values, while the pre-
cision is 100% correct as shown in the precision figure. P1
and P2 have similar positive values with DECA and the six
learning-based approaches, but their F1-score and AUC are
much higher. For AUC , we can see that the distribution of
high performances is similar to the F1-score figure. Most of
our patterns are above 0.7.

We further analyze why the DECA approach could not
work well on the feature-request emails identification task.
First, DECA utilized 36 linguistic rules [e.g., (someone)
want to (something), and (something) should/could be
(verb)] to identify sentences expressing feature requests.
Those rules focus only on the lexical patterns of sentences,
while the FRA tagging technique we adopted focuses on
lexical, syntax, and semantic patterns. In some cases, pure
lexical patterns could not provide precise annotations. For
example, the sentence ‘It makes harder for me when I want
to ‘cd’ those directories in the terminal’ is classified as a
feature request by DECA, as it matches with the ‘[some-
one] wants to [something]’ lexical pattern. But it is express-
ing complaints about the CD operation. FRA classifies this
sentence with ‘Drawback,’ which provides a more accurate
annotation result for further analysis. Second, our approach
mines the semantic sequence patterns of a given email,
which could obtain more rich information about the context
of each sentence. By considering the context information,
our approach has the opportunity to identify feature-request
emails more accurately. For example, an email contains the
sentence ‘I need some advice with message groups and I’ve
failed to find a solution in the net.’ The sentence is tagged
as feature-request by DECA, and the email containing the
sentence is classified as a feature request as well accord-
ing to our experiment definition. But the email is asking
for advice rather than requesting features. When analyzing
the contextual sentences, our approach could not match the
email with our semantic sequence patterns. Thus, a nega-
tive prediction is made by our approach, which is a correct
prediction in this case.

For the six learning-based approaches, the average
F1-score is only around 30%. The reasons why our approach
noticeably outperforms the six learning-based text classifica-
tion models are: those text classification algorithms are not
trained sufficiently from the limited training datasets, while
our approach mine the expressing logic, i.e., the semantic
sequence patterns, which is easier to train than the text clas-
sification tasks.

Summary When predicting whether emails are fea-
ture requests, most of our patterns outperform the existing
approaches, and could achieve good performances in terms
of precision, recall, F1-score, and AUC.

5 Discussion and future work

In this section, we discuss the implications of our results and
possible ideas for future work.

5.1 Implications on how developers describe
intentions

In our study, we tag each sentence in the feature-request
emails into different categories according to its content. The
sequence of tags forms a semantic sequence, which denotes
the semantic logicality on how developers express feature
requests. The semantic sequence patterns indicate the fre-
quent logic flows that are commonly appearing in express-
ing feature requests. Unlike traditional ML approaches, the
outputs of our approach are rule-based patterns, thus making
them well suited for the software engineering tasks. As one
of the results of our study, 10 semantic sequence patterns
are identified by leveraging mining algorithms and objec-
tive optimization strategies. The result indicates that users
are likely to follow some logical patterns to describe their
intentions when requesting features. We believe that the pro-
posed approach can contribute to the logic-based learning
approaches [3].

By further analyzing the generated semantic sequence
patterns, we might be able to classify feature requests
according to their expression logics. For example, P5 pro-
vides two elements. One is {<S,intent>, <intent, E>},
and another is {<S, intent>, <drawback, expression>,
<expression, intent>}. The first pattern may match emails
that describe completely new ideas. The second pattern
may match emails that complain about the existing system
functionalities. Thus we may classify emails into new-idea
feature requests and complaint feature requests based on
the matching patterns. Moreover, analysis of the generated
semantic sequence patterns may empirically confirm the
existing personality and psychology studies on how people
describe intentions. For example, five conditions have been
reported on intentional behaviors determination [24, 34, 35]:
(1) a desire for an outcome, (2) beliefs about a behavior
leading to that outcome, (3) a resulting intention to perform
that behavior, (4) the skill to perform the behavior, and (5)
awareness of fulfilling the intention. In the generated pat-
terns, we can recognize sequences that deliver similar infor-
mation. For example, in P9, <S,intent> might fit condition

267Requirements Engineering (2021) 26:255–271

1 3

(1), <intent, benefit> might fit condition (2), and <intent,
expression> might fit the other three conditions. Our results
can provide practical evidence for those proposed models.

5.2 Balancing the cost and risk

Discovering feature requests from a large amount of emails is
important for both open source and industrial organizations to
maintain and improve their systems. Instead of analyzing every
posted email, our patterns can narrow down the analysis scope
to a smaller set. The 10 different patterns provided in our study
can accommodate various objectives. For organizations that
would like to obtain as many feature requests as they desire,
P10 can be applied and gives a 92% recall on feature request
emails by predicting 57% emails to be feature request emails
(shown in Fig. 3). For organizations that would like to obtain
a more accurate prediction on feature request emails, they can
select P1–P5. Although P5 can achieve 84% precision on pre-
dicting feature request emails, it can only achieve the recall of
12%. P2 is more recommended since it can achieve 72% recall
on the precision of 71%. Only 22% of the emails are predicted
to be feature requests.

5.3 Extensive application

Social media, as the collective of online communication chan-
nels, includes many textual resources that may contain hidden
feature requests. Our approach focuses on the textual content
of development emails. It can also be extended to other similar
resources, such as discussions in the issue tracking systems,
comments in open forums, and project reviews. However,
there are two limitations when applying our approach. First,
our approach is constructed based on mining the semantic
sequences extracted from textual artifacts. If the textual arti-
facts contain few semantic sequences, then the sequence min-
ing algorithm will not work well and may be inefficient to
find patterns. Therefore, the input data need to be filtered by a
threshold on the length of sentences. Based on our experience,
a threshold over 4 is recommended. Second, our approach is
designed to analyze natural language artifacts. For textual
resources that contain a large proportion of source code, fil-
tration of source code from natural language text is needed
before applying the proposed approach. The study proposed
by Bacchelli et al. [6] on classifying email contents can help
filter out non-natural language text emails. Moreover, the pro-
posed approach can also help rebuild software requirements
specifications for open source projects, which are often found
lacking of high-quality documentation.

In future work, we plan to enlarge the tag categories by
investigating more semantic categories. For example, we
can apply sentiment analysis to define ‘like’ and ‘hate’ tags.

Then we can use the enlarged tags to generate new patterns,
and try to improve the prediction performances of the gen-
erated patterns. We also plan to conduct further analysis of
the generated patterns to report how developers express fea-
ture requests empirically. In addition, we can refine feature
requests into detail topics, such as new-idea feature requests
and complaint feature requests by leveraging the matching
patterns.

6 Threats to validity

External Validity The results of our study may not gen-
eralize beyond the project we evaluated. However, emails
are found to be quite similar among different open source
communities. To mitigate this threat, we had a set of cri-
teria when selecting suitable projects. We picked Ubuntu,
which is a popular and well-known open source project that
has a large international community of contributors and a
mature communication system via mailing lists. Moreover,
we perform cross-project validation on the other four open
source projects. The results show that our approach can also
be generalizable to these projects, which largely reduces the
external threat.

Internal Validity Threats to internal validity may come
from the process of manually labeled emails to be feature
requests or not. The accuracy of labeling has impact on
our results. We understand that such a process is subject to
mistakes. To reduce the threat, we build an inspection team
to reach agreements on different options as introduced in
Sect. 3.3.3. To answer RQ3, we rely on human judgments to
classify emails, which is an error-prone process. To allevi-
ate this threat, we gave a set of very specific instructions to
each participant to clarify and unify the annotation process.
Another threat may lie in the direct usage of existing work
to automatically tag sentences in emails. Since the existing
tagging approach is not one hundred percent correct, bias
may be introduced by the misclassification of the tagging
approach. However, the tagging approach has been proved
to perform steadily well on completely new projects (with
84–87% correctness) by Shi et al. Moreover, we randomly
sampled 100 auto-tagged sentences in emails, and 85% of
them were correct. We consider that the tagging results are
also reliable in feature request emails. Therefore, this threat
has minor impact to the results.

Construct Validity The construct threats relate to the
suitability of evaluation metrics. We utilize precision and
recall to evaluate the performance, in which we use the
manually labeled emails as ground-truth when calculating
the performance metrics. The threats might come from the
process of manual inspection and labeling. We understand
that such a process is subject to mistakes. To reduce that

268 Requirements Engineering (2021) 26:255–271

1 3

threat, we build two groups to reach agreements on differ-
ent options.

7 Related work

7.1 Automated feature requests detection

Rodeghero et al. [36] presented an automatic technique that
extracted useful information from the transcripts of devel-
oper-client spoken conversations to construct user stories.
They used machine learning classifiers to determine whether
a conversation contains user story information or not.

Maalej and Nabil [33] leveraged probabilistic techniques
as well as text classification, natural language processing,
and sentiment analysis techniques to classify app reviews
into bug reports, feature requests, user experiences, and rat-
ings. Their results showed that the classification can reach
the precision between 70 and 95% and recall between 80 and
90% actual results.

Vlas and Robinson [55] proposed a grammar-based
design of software automation for the discovery and classifi-
cation of natural language requirements found in open source
projects repositories. Herzig et al. [26] manually examined
more than 7000 issue reports and discussed the impact of
misclassification of bugs in the bug databases of five open
source projects. Their results showed that 39% of files
marked as defective actually include new features, updates
to documentation, or internal refactoring. The authors sug-
gested that humans should always be involved when dealing
with the posted issue reports. Merten et al. [38] investigated
natural language processing and machine learning features
to detect software feature requests in issue tracking systems.
Their results showed that software feature requests detec-
tion can be approached on the level of issues and data fields
with satisfactory results. Merten et al. [37] also investigated
how requirements are communicated in issue tracking sys-
tems by manually reviewing 200 issues. They categorized
the text and reported on the distribution of issue types and
information types. Their results showed that information
with respect to prioritization and scheduling can be found
in natural language data. Antoniol et al. [4] investigated
whether the text of the issues posted in bug tracking sys-
tems is enough to classify them into corrective maintenance
and other kinds of activities. They alternated among various
machine learning approaches such as decision trees, naive
Bayes classifiers, and logistic regression to distinguish
enhancement apart from other issues posted in the system.

Cledland-Huang et al. [15] designed automatic forum
management (AFM) system, which was used to automati-
cally detect duplicated feature requests that have been
already posted in the issue tracking systems. Lin et al. [48]
proposed an approach to automatically identify redundant

feature requests that have requested features that have been
already implemented by applying the feature tree model.

Summing up, previous approaches differ from our work
as they:

• identified feature requests from spoken conversations
[36];

• identified feature requests from app reviews [33];
• identified feature requests from project repositories [55]

and issue tracking systems [4, 26, 37, 38]
• detected duplicated and redundant feature requests in

issue tracking systems [15, 48].

We retrieve hidden feature requests from development
emails, which complements the existing studies on auto-
matically detecting feature requests.

7.2 Email contents analysis

Di Sorbo et al. [52] proposed a classification approach to
classify the sentences in development emails according to
their purposes using natural language parsing techniques.

Furthermore, Huang et al. [28] found that Di Sorbo’s
work cannot be generalized to discussions in issue tracking
systems, and they addressed the deficiencies of Di Sorbo
et al.’s taxonomy by proposing a convolution neural net-
work (CNN)-based approach. According to the purposes
of sentences in emails, their work identified specific email
fragments that can be used for specific maintenance tasks.
Their work can classify Feature Requests at the sentence
level, whereas we take the contextual information into
consideration and focus on identifying the main intent of
an email instead of email fragments.

Bacchelli et al. [6] presented an automatic approach to
classify email content at line level into five language cat-
egories: Natural Language text, source code, stack traces,
code patches, and junk. The results were validated through
cross mailing list validation. Their work focuses on puri-
fying the emails by finding natural language text, while
we concern about whether an email contains any feature
requests. Our study can complement their outputs as a
deeper analyzer. Kiritchenko and Matwin [30] presented
a paper on email classification by combining labeled and
unlabeled data. Authors tried to define classes as inter-
esting and uninteresting categories. VSM was showed
to benefit from the co-training process proposed in the
paper. They predict emails to be interesting or uninterest-
ing, while we predict emails to be feature request or non
feature request. Zhang et al. [57] extracted information
from mailing lists to predict software defects. Metrics were
summarized from the information. The results showed that
defects were related to specific structures that appeared
in mailing lists such as the content and thread structures.

269Requirements Engineering (2021) 26:255–271

1 3

They predict defects from emails, while we predict feature
requests. Corston-Oliver et al. presented an approach to
provide task oriented-summary of email messages by iden-
tifying task-related sentences in development messages.
Mining of intention in developers’ discussions provides a
higher level of abstraction. The intents of the sentences are
used to summarize tasks in their work, while we analyze
the intents based on feature requests to identify semantic
sequence patterns of feature requests.

Morales-Ramirez et al. [39] combined speech-act anno-
tation and sentiment features to identify intentions, deon-
tic mood, and length of the textual user feedbacks through
sentence parsing. Multiple types of speech-act were used to
indicate different purposes. For example, the combination
of Requestive and Positive speech-acts may give a hint of a
possible requirement. Although their work provided infor-
mation regarding the correlation between speech-acts types
and the issue types, it didn’t provide a way to extract features
from these issues and comments.

7.3 Automatic email classification

Emails are one of the crucial sources of communica-
tion, and the volume continues to grow. Many researches
devote to automatic email classification, such as spam
detection, multi-folder categorization, and phishing email
classification.

Spam detection aims to develop binary classifiers that
classify emails into spam or ham. Barushka and Hajek [10]
proposed a regularized deep multi-layer perceptron neural
network as a binary classifier, with 99.89% of accuracy on
the SpamAssassin dataset and 98.76% of accuracy on the
Enron-Spam dataset. Bahgat et al. [9] proposed a model
based on a semantic feature selection with an SVM classi-
fier, with 94% accuracy on Enron-Spam Dataset. Faris et al.
[27] presented a binary model based on a Genetic Algorithm
as a feature selector and the Random Weight Network as a
classifier, which reached 96.70% of accuracy on the Spa-
mAssassin dataset.

Multi-folder categorization approaches proposed multi-
class classifiers that categorize emails into various user-
defined email directories. Kiritchenko et al. [31] employs
temporal features, such as day of the week and time of the
day, to classify email messages into classes. They extracted
relevant temporal features from emails and combined them
with conventional content-based classification approaches.
Chakravarthy et al. [14] presented a supervised learning
approach that leverages graph mining techniques for multi-
folder email classification. The experimental results showed
significant performance improvement over Naive Bayesian
approach for varied emails drawn from different domains.
Aery et al. [1] proposed graph mining techniques for binary
classification of documents in a delimited context, based on

the occurrence of terms in the structured emails. The pro-
posed approach outperformed the Naive Bayes and reached
more than 90% of accuracy with a large size of folders.

Phishing email classification researches provided binary
classifiers that categorize emails into phishing or ham. Fang
et al. [19] proposed THEMIS which incorporated recurrent
convolutional neural networks (RCNN) with multilevel vec-
tors and attention mechanism. They modeled emails at the
email header, the email body, the character level, and the
word level simultaneously. The experimental results show
that the overall accuracy of THEMIS reaches 99.848%.
Bagui et al. [8] applied deep semantic analysis, machine
learning, and deep learning techniques, to capture inherent
characteristics of email text, and classify emails as phish-
ing or non-phishing. Sankhwar et al. [45] proposed EMUD
which focused on relevant URLs features that discriminate
between legitimate and malicious/phishing URLs. This
EMUD algorithm selects 14 heuristics to detect malicious
or phishing URLs.

Our work differs from existing researches in that we focus
on classifying emails into feature-request and non-feature-
request, which aims to benefit the release planning practices.
In addition, our work complements the existing studies on
automatic email classification.

8 Conclusion

In this paper, we presented an approach to predict whether
a development email is requesting features. After tagging
each sentence in emails with the semantic categories based
on 81 fuzzy rules extracted from confirmed feature requests
by our previous work, we obtained the semantic sequences
for each email. We then applied sequence pattern mining
together with objective optimization to generate a set of 10
semantic sequence patterns.

To evaluate our approach, we conducted an empirical
study on 248 emails from the Ubuntu community, which
were not included in the training dataset. The results show
that the 10 generated patterns can effectively identify feature
requests from development emails while achieving differ-
ent objectives. To achieve high precision, the corresponding
patterns range the precision from 59 to 100% by predicting
less than 18% emails to be feature requests. To achieve high
recall, the corresponding patterns range the recall from 53
to 73% by keeping the AUC above 0.64.

We applied a state-of-the-art approach DECA and four
machine learning approaches to classify the same 248
emails, and compared the performances with three of the 10
patterns we generated. The results show that compared with
the five existing approaches, our approach outperformed in
terms of precision, recall, F1-score, AUC, and positive.

270 Requirements Engineering (2021) 26:255–271

1 3

We believe that our contributions can make the feature
requests easier to understand and analyze, and can help to
discover feature requests from massive textual emails, thus
improve feature request management in the open source
communities, as well as contribute to crowd-based require-
ments engineering.

Acknowledgements Our deepest gratitude goes to the anonymous
reviewers for their careful work and thoughtful suggestions that have
helped improve this manuscript substantially. We also would like to
thank Michael Shoga for constructive criticism of this manuscript. This
work is supported by the National Key Research and Development
Program of China under Grant No. 2018YFB1403400, Youth Inno-
vation Promotion Association CAS, and the National Science Foun-
dation of China under Grant Nos. 61802374, 61432001, 61602450,
and 62002348.

This material is also based upon work supported by the U.S. Depart-
ment of Defense through the Systems Engineering Research Center
(SERC), and the National Science Foundation Grant CMMI-1408909,
Developing a Constructive Logic-Based Theory of Value-Based Sys-
tems Engineering.

References

 1. Aery M, Chakravarthy S (2005) emailsift: email classification
based on structure and content. In: Proceedings of the 5th IEEE
international conference on data mining (ICDM 2005), 27–30 Nov
2005, Houston, Texas, USA, pp 18–25

 2. Agrawal R, Imieliński T, Swami A (1993) Mining association
rules between sets of items in large databases. Acm Sigmod Rec
22:207–216

 3. Alrajeh D, Russo A, Uchitel S, Kramer J (2016) Logic-based
learning in software engineering. In: Proceedings of the 38th
international conference on software engineering, ICSE 2016,
Austin, TX, USA, May 14–22, 2016, pp 892–893

 4. Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc YG
(2008) Is it a bug or an enhancement? A text-based approach to
classify change requests. In: Proceedings of the 2008 conference
of the center for advanced studies on collaborative research: meet-
ing of minds. ACM, p 23

 5. Antoniol G, Ayari K, Penta MD, Khomh F, Guéhéneuc Y (2008)
Is it a bug or an enhancement? A text-based approach to classify
change requests. In: Proceedings of the (2008) conference of the
centre for advanced studies on collaborative research, Oct 27–30,
2008. Richmond Hill, p 23

 6. Bacchelli A, Sasso TD, D’Ambros M, Lanza M (2012) Content
classification of development emails. In: International conference
on software engineering, pp 375–385

 7. Bacchelli A, Mocci A, Cleve A, Lanza M (2017) Mining struc-
tured data in natural language artifacts with island parsing. Sci
Comput Program 150:31–55

 8. Bagui S, Nandi D, Bagui SC, White RJ (2019) Classifying phish-
ing email using machine learning and deep learning. In: 2019
International conference on cyber security and protection of digi-
tal services, cyber security 2018, Oxford, United Kingdom, June
3–4, 2019, pp 1–2

 9. Bahgat EM, Rady S, Gad W, Moawad IF (2018) Efficient email
classification approach based on semantic methods. Ain Shams
Eng J 9(4):3259–3269

 10. Barushka A, Hajek P (2018) Spam filtering using integrated dis-
tribution-based balancing approach and regularized deep neural
networks. Appl Intell 48(10):35383556

 11. Bergstra J, Bengio Y (2012) Random search for hyper-parameter
optimization. J Mach Learn Res 13(1):281–305

 12. Brown PF, Desouza PV, Mercer RL, Pietra VJD, Lai JC (1992)
Class-based n-gram models of natural language. Comput Linguist
18(4):467–479

 13. Burdukiewicz M, Sobczyk P, Lauber C (2015) N-gram analysis
of biological sequences. Biol Cybern 9(3):85–95

 14. Chakravarthy S, Venkatachalam A, Telang A (2010) A graph-
based approach for multi-folder email classification. In: ICDM
2010, the 10th IEEE international conference on data mining,
Sydney, Australia, 14–17 Dec 2010, pp 78–87

 15. Cleland-Huang J, Dumitru H, Duan C, Castro-Herrera C (2009)
Automated support for managing feature requests in open forums.
Commun ACM 52(10):68–74

 16. Community U (2017) Mailing lists. https:// lists. ubuntu. com/
 17. Community U (2017) Ubuntu development discuss. https:// lists.

ubuntu. com/ archi ves/ ubuntu- devel- discu ss/
 18. Di Sorbo A, Panichella S, Visaggio CA, Di Penta M, Canfora

G, Gall H (2016) Deca: development emails content analyzer.
In: Proceedings of the 38th international conference on software
engineering companion, ACM, ICSE ’16, pp 641–644

 19. Fang Y, Zhang C, Huang C, Liu L, Yang Y (2019) Phishing email
detection using improved RCNN model with multilevel vectors
and attention mechanism. IEEE Access 7:56329–56340

 20. Fawcett T (2006) An introduction to ROC analysis. Pattern Rec-
ogn Lett 27(8):861–874

 21. Goguen JA, Linde C (1993) Techniques for requirements elicita-
tion. In: Proceedings of IEEE international symposium on require-
ments engineering, RE 1993, San Diego, California, USA, Jan
4–6, 1993, pp 152–164

 22. Groen EC, Seyff N, Ali R, Dalpiaz F, Dörr J, Guzman E, Hosseini
M, Marco J, Oriol M, Perini A, Stade MJC (2017) The crowd in
requirements engineering: the landscape and challenges. IEEE
Softw 34(2):44–52

 23. Guzzi A, Bacchelli A, Lanza M, Pinzger M, Deursen AV (2013)
Communication in open source software development mailing
lists. In: Working conference on mining software repositories, pp
277–286

 24. Heider F (1958) The psychology of interpersonal relations. Am
Sociol Rev 23(6):170

 25. Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: how
misclassification impacts bug prediction. In: 35th International
conference on software engineering, ICSE ’13, San Francisco,
CA, USA, May 18–26, 2013, pp 392–401

 26. Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature:
how misclassification impacts bug prediction. In: Proceedings of
the 2013 international conference on software engineering. IEEE
Press, pp 392–401

 27. Faris H, Ala MAZ, Heidari AA, Aljarah I, Mafarja M, Hassonah
MA, Fujita H (2018) An intelligent system for spam detection and
identification of the most relevant features based on evolutionary
random weight networks. Inf Fusion 48:67–83

 28. Huang Q, Xia X, Lo D, Murphy GC (2020) Automating intention
mining. IEEE Trans Softw Eng 46(10):1098–1119. https:// doi. org/
10. 1109/ TSE. 2018. 28763 40

 29. Kim Y (2014) Convolutional neural networks for sentence clas-
sification. In: Moschitti A, Pang B, Daelemans W (eds) Proceed-
ings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP, 2014, October 25-29, 2014, Doha,
Qatar. Meeting of SIGDAT, a Special Interest Group of the ACL.
ACL, pp 1746–1751. https:// doi. org/ 10. 3115/ v1/ d14- 1181

 30. Kiritchenko S, Matwin S (2011) Email classification with co-
training. Ibm Corp 301–312

 31. Kiritchenko S, Matwin S, Abu-Hakima S (2004) Email classifica-
tion with temporal features. In: Intelligent information processing
and web mining, proceedings of the international IIS: IIPWM’04

https://lists.ubuntu.com/
https://lists.ubuntu.com/archives/ubuntu-devel-discuss/
https://lists.ubuntu.com/archives/ubuntu-devel-discuss/
https://doi.org/10.1109/TSE.2018.2876340
https://doi.org/10.1109/TSE.2018.2876340
https://doi.org/10.3115/v1/d14-1181

271Requirements Engineering (2021) 26:255–271

1 3

conference held in Zakopane, Poland, May 17–20, 2004, pp
523–533

 32. Liu P, Qiu X, Huang X (2016) Recurrent neural network for text
classification with multi-task learning. 1605.05101

 33. Maalej W, Nabil H (2015) Bug report, feature request, or simply
praise? On automatically classifying app reviews. In: 2015 IEEE
23rd international requirements engineering conference (RE), pp
116–125

 34. Malle BF (1999) How people explain behavior: a new theoreti-
cal framework. Personal Soc Psychol Rev Off J Soc Person Soc
Psychol 3(1):23

 35. Malle BF, Knobe J (1997) The folk concept of intentionality. J
Exp Soc Psychol 33(2):101–121

 36. Mcmillan C, Mcmillan C, Mcmillan C, Mcmillan C (2017)
Detecting user story information in developer-client conversations
to generate extractive summaries. In: IEEE/ACM international
conference on software engineering, pp 49–59

 37. Merten T, Mager B, Hübner P, Quirchmayr T, Paech B, Bürsner
S (2015) Requirements communication in issue tracking systems
in four open-source projects. In: REFSQ workshops, pp 114–125

 38. Merten T, Falis M, Hübner P, Quirchmayr T, Bürsner S, Paech B
(2016) Software feature request detection in issue tracking sys-
tems. In: Requirements engineering conference (RE), 2016 IEEE
24th international, pp 166–175

 39. Morales-Ramirez I, Kifetew FM, Perini A (2017) Analysis of
online discussions in support of requirements discovery. In: Inter-
national conference on advanced information systems engineer-
ing. Springer, Berlin, pp 159–174

 40. Pei J, Han J, Mortazaviasl B, Pinto H, Chen Q, Dayal U, Hsu MC
(2001) Prefixspan: mining sequential patterns efficiently by prefix-
projected pattern growth, pp 215–224

 41. Rijsbergen CJV (1979) Information retrieval, 2nd edn. Butter-
worth-Heinemann, Newton

 42. Robertson AM, Willett P (1998) Applications of n-grams in tex-
tual information systems. J Doc 54(1):48–67

 43. Russell SJ, Norvig PN (2010) Artificial intelligence: a modern
approach. ThirdInternational Edition. Pearson Education. https://
dblp. org/ rec/ books/ daglib/ 00238 20. bib

 44. Salton G, Buckley C (1988) Term-weighting approaches in auto-
matic text retrieval. Inf Process Manag 24(5):513–523

 45. Sankhwar S, Pandey D, Khan RA (2019) Email phishing: an
enhanced classification model to detect malicious urls. EAI
Endorsed Trans Scal Inf Syst 6(21):e5

 46. Saraiva J, Bird C, Zimmermann T (2015) Products, developers,
and milestones: How should i build my N-gram language model.
In: Proceedings of the joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on

the foundations of Software Engineering (ESEC/FSE) Industry
Track, ACM

 47. Shi L, Wang Q, Li M (2013) Learning from evolution history to
predict future requirement changes. In: 21st IEEE international
requirements engineering conference, RE 2013, Rio de Janeiro,
RJ, Brazil, July 15–19, 2013, pp 135–144

 48. Shi L, Chen C, Wang Q, Boehm BW (2016) Is it a new feature or
simply “don’t know yet”?: On automated redundant OSS feature
requests identification. In: 24th IEEE international requirements
engineering conference, RE 2016, Beijing, China, Sep 12–16,
2016, pp 377–382

 49. Shi L, Chen C, Wang Q, Li S, Boehm B (2017) Understanding fea-
ture requests by leveraging fuzzy method and linguistic analysis.
In: IEEE/ACM international conference on automated software
engineering, pp 440–450

 50. Shi L, Chen C, Wang Q, Li S, Boehm BW (2017) Understanding
feature requests by leveraging fuzzy method and linguistic analy-
sis. In: Proceedings of the 32nd IEEE/ACM international confer-
ence on automated software engineering, ASE 2017, Urbana, IL,
USA, Oct 30–Nov 03, 2017, pp 440–450

 51. Slimani T, Lazzez A (2013) Sequential mining: patterns and algo-
rithms analysis. Int J Comput Electron Res 2(5):639–64

 52. Sorbo AD, Panichella S, Visaggio CA, Penta MD, Canfora G,
Gall HC (2015) Development emails content analyzer: intention
mining in developer discussions (T). In: Proceedings of the 2015
30th IEEE/ACM international conference on automated software
engineering (ASE), pp 12–23

 53. Srikant R, Agrawal R (1996) Mining sequential patterns: gener-
alizations and performance improvements. Springer, Berlin, pp
1–17

 54. Steinmacher I, Silva MAG, Gerosa MA (2014) Barriers faced
by newcomers to open source projects: a systematic review. In:
Source Open Corral L, Sillitti A, Succi G, Vlasenko J, Wasserman
AI (eds) Software, mobile open source technologies, pp 153–163

 55. Vlas RE, Robinson WN (2012) Two rule-based natural lan-
guage strategies for requirements discovery and classification
in open source software development projects. J Manag Inf Syst
28(4):11–38

 56. Zaki MJ (2001) Spade: an efficient algorithm for mining frequent
sequences. Mach Learn 42(1–2):31–60

 57. Zhang Y, Shen B, Chen Y (2014) Mining developer mailing list
to predict software defects, vol. 1, pp 83–390

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://dblp.org/rec/books/daglib/0023820.bib
https://dblp.org/rec/books/daglib/0023820.bib

	Automatically detecting feature requests from development emails by leveraging semantic sequence mining
	Abstract
	1 Introduction
	2 Approach
	2.1 Generate semantic sequences
	2.2 Mining semantic sequence patterns
	2.3 Discover feature requests from texts by semantic sequence patterns
	2.4 Tools support: feature request analyzer and detector (FRAD)

	3 Experimental setup
	3.1 Research questions
	3.2 Subject projects
	3.3 Data preparation
	3.3.1 Data filtering
	3.3.2 Sampling
	3.3.3 Label ground-truth emails

	3.4 Evaluation measurements
	3.5 Experiment design

	4 Results and analysis
	4.1 Answering RQ1 (effectiveness)
	4.2 Answering RQ2 (generalizability)
	4.3 Answering RQ3 (advantage)

	5 Discussion and future work
	5.1 Implications on how developers describe intentions
	5.2 Balancing the cost and risk
	5.3 Extensive application

	6 Threats to validity
	7 Related work
	7.1 Automated feature requests detection
	7.2 Email contents analysis
	7.3 Automatic email classification

	8 Conclusion
	Acknowledgements
	References

