
Vol.:(0123456789)1 3

Requirements Engineering (2021) 26:255–271 
https://doi.org/10.1007/s00766-020-00344-y

ORIGINAL ARTICLE

Automatically detecting feature requests from development emails 
by leveraging semantic sequence mining

Lin Shi1,5  · Celia Chen2 · Qing Wang1,3,5 · Barry Boehm4

Received: 12 January 2020 / Accepted: 16 November 2020 / Published online: 30 March 2021 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Mailing list is widely used as an important channel for communications between developers and stakeholders. It consists 
of emails that are posted for various purposes, such as reporting problems, seeking help in usage, managing projects, and 
discussing new features. Due to the intensive amount of new incoming emails every day, some valuable emails that intend 
to describe new features may get overlooked by developers. However, identifying these feature requests from development 
emails is a labor-intensive and challenging task. In this paper, we propose an automated solution to discover feature requests 
from development emails by leveraging semantic sequence patterns. First, we tag sentences in emails by using 81 fuzzy rules 
proposed in our previous study. Then we represent the semantic sequence with the contextual information of an email in a 
2-g model. After applying sequence pattern mining techniques, we generate 10 semantic sequence patterns from 317 tagged 
emails that are randomly sampled from the Ubuntu community. We also conduct an empirical evaluation of their capability 
to discover feature requests from massive emails in Ubuntu and other four open source communities. The results show that 
our approach can effectively identify feature requests from these emails. Compared to existing baselines, our approach can 
achieve a better performance in terms of precision, recall, F1-score, AUC, and positive, with the average precision and recall 
for discovering feature requests from emails being 76% and 86%, respectively.

Keywords Requirements discovery · Requirements analysis · Text mining · Feature requests

1 Introduction

Obtaining a sufficient number of requirements is crucial in 
software development as it increases the opportunity to gain 
market share and secure more customers. To achieve that 
goal, traditional RE approaches typically select a limited 
number of stakeholders and crowd representatives to col-
lect user requirements [21]. In the past decades, there has 
been a massive increase in global collaboration via online 
platforms, such as Github and JIRA. The large number of 
stakeholders makes the traditional activities of require-
ments gathering and analyzing extremely costly and time-
consuming, and thus, these approaches miss the opportunity 
to continuously involve large groups of users who express 
their feedback or feature requests through a variety of media. 
The new trend is now shifting toward the CrowdRE, which 
focuses on automation or semi-automation of the require-
ments gathering process so that validated user requirements 
can be derived from a crowd [22].

Currently, mailing-lists act as one of the most frequently 
used communication channels that enable users to easily 
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submit feature requests and greatly improve the efficiency 
for organizations when gathering new ideas. For example, in 
the Ubuntu community, there are 24 among 358 mailing lists 
that are designated for user feedback [16]. However, there 
are challenges to gather and analyze these feature requests.

First, the volume of emails can be very large, and it is 
easy for developers to miss any requested features when they 
get lost in other unnecessary contents [54]. For example, 
apart from other active communication channels, the Ubuntu 
community has around 4000 daily incoming emails from its 
mailing-lists [16]. We randomly selected 507 emails from 
one of the Ubuntu mailing-lists for users and found that 116 
of them were feature requests, but only a few of them were 
recorded and traced in the issue tracking system. Develop-
ers contribute to the open source communities under the 
burden of daily programming tasks as well as a massive 
amount of incoming emails. In such a situation, emails that 
are requesting new features are likely to be ignored, which 
has been confirmed by existing research. Guzzi et al. [23] 
reported that core developers participate in less than 75% of 
the threads in mailing-lists, and only 54% of emails suggest-
ing features get processed.

The second challenge is that emails in the mailing-lists 
may relate to a variety of topics. For example, some emails 
may be posted for user complaints, bugs, or feature requests 
[7], while some emails may be posted for opinion asking 
or information seeking [52]. Moreover, Herzig et al. [25] 
and Antoniol et al. [5] found that over 30% of all user feed-
back are misclassified in issue tracking systems (i.e., rather 
than referring to a new feature, they resulted in an update of 
documentation, or a code fix). Hence, defining an enforced 
rule that any email proposing a feature must include a tag 
‘Feature Request’ might also not help, but result in a number 
of invalid user requirements. To identify user requirements 
from emails, developers have to read through all the emails 
carefully and separate feature requesting emails from other 
emails, which will inevitably increase their workload.

In this paper, we propose an automated solution to dis-
cover feature requests from massive textual emails. First, we 
classify sentences in the emails into six categories: Intent, 
Benefit, Drawback, Example, Explanation, and Trivia. These 
categories represent the semantic meanings by leveraging 81 
fuzzy rules proposed by Shi et al. [50]. Second, we trans-
form the emails into the semantic sequences based on the 
classification results. By mining the sequences, we identify 
semantic sequence patterns that can indicate feature requests 
from development emails. Ten semantic sequence patterns 
are reported, and we conduct an empirical evaluation toward 
their capability to discover feature requests from massive 
emails in Ubuntu and other four open source communities. 
The results show that our approach can effectively identify 
feature requests from these emails. Compared to five existing 

baselines, our approach has a better performance in terms of 
precision, recall, F1-score, AUC, and positive.

The major contributions of this paper are as follows.

• We propose an automated solution to discover feature 
requests from a large volume of development emails by 
providing 10 semantic sequence patterns that can achieve 
satisfying performance under different business objec-
tives.

• We conduct an empirical evaluation on Ubuntu and 
four other open source communities to discover feature 
requests from a large volume of development emails. The 
results conform to the generalizability and usability of 
the proposed approach.

• We provide publicly available tools (FRAD) and dataset 
to replicate our experiments.1

The remainder of the paper is organized as follows. Sec-
tion 2 elaborates on the approach. Section 3 presents the 
experimental setup. Section 4 describes the results and anal-
ysis. Section 5 discusses the implications and future work. 
Section 6 shows the threats to validity. Section 7 introduces 
the related work. Section  8 concludes our work.

2  Approach

Our approach is inspired by Shi et al.’s research [49] about 
automated analysis on the contents of feature requests. They 
proposed 81 fuzzy rules that can classify textual sentences 
into six semantic tags (i.e., Intent, Benefit, Drawback, Exam-
ple, Explanation, and Trivia). By providing the tagged con-
tents, one can understand and analyze the requirements in 
an efficient way. Our work takes advantage of the tagged 
contents, and mines the sequences of sentence tags to learn 
common expressing patterns in feature requests, which can 
be used to identify feature requests from any textual medi-
ums, such as Github and online reviews.

The process of our approach is illustrated in Fig. 1. First, 
we tag sentences in the emails into six tags according to the 
81 fuzzy rules proposed by Shi et al. [49]. After that, we 
generate the corresponding semantic sequences for emails. 
Then we apply sequence patterns mining algorithm to dis-
cover candidate feature request semantic patterns. We use 
Fn-score as the optimization function to output the final 
semantic sequence patterns, which can be used to distinguish 
feature requests emails from other types of emails.

1 http:// 39. 104. 76. 212: 8082.

http://39.104.76.212:8082
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2.1  Generate semantic sequences

To generate the semantic sequence for each email, we 
first classify sentences in the emails into six semantic 
categories based on Shi et al.’s previous work [49]. The 
six categories are defined in Table 1. We utilize the API 
service provided by Shi et al., which automatically returns 
the tagging results for a given text. Second, we generate 
concise semantic sequences and transform them into 2-g 
semantic sequences. Finally, we transform the 2-g seman-
tic sequences into natural numbers for sequence mining.

Given an email with tags, we can obtain all the sentence 
categories in the order of the expressing sequence. Tak-
ing the email in Fig. 1 as an example, we can obtain its 
expressed sequence: {trivia, intent, explanation, explana-
tion, benefit, intent, trivia}.

To keep the sequence concise, we adjust the original 
expressing sequence with the following steps:

• Excluding sentences with ‘trivia’ tags.
• Combining the same consecutively repeating tags.
• Adding Start(S) and End(E) tags.

Given n sentences, we generate the simplified semantic 
sequences as follows:

where ti is the semantic category of sentence i, S denotes 
the starting of an email, and E denotes the ending. In this 
work, the number of semantic categories is 5 after ignoring 
the trivia category. Therefore, after adjusting the original 
expressing sequence, the concise semantic sequence of the 
given example is S, intent, explanation, benefit, intent, E.

In order to capture the contextual information of each sen-
tence in the email, we leverage the N-gram model to repre-
sent the semantic sequences of each sentence. N-gram model 
is a contiguous sequence of n items from a given sample of 

(1)Q = {S, t1, t2,… , tn,E}

Fig. 1  The approach overview

Table 1  Definitions of sentence categories

Category Importance Definition

Intent 1 Descriptions about ideas, needs, or expectations to improve the system and its functionalities
Benefit 2 Descriptions about good or helpful results or effects that the proposed feature will deliver
Drawback 3 Descriptions of disadvantages or the negative parts of the current system behavior
Example 4 Descriptions of examples or references in support of the proposed feature
Explanation 5 Detailed information about the current behavior, scenarios, or solutions related to the proposed feature
Trivia 6 Other information that are not related to the proposed feature nor the system
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text, which is widely used in natural language processing 
[46] and biological sequence analysis [13] . In this study, we 
use 2-g model to represent the concise semantic sequences 
because of the following two reasons: (1) it records more 
context information and can retain the relationship between 
neighbor semantic categories [12]; (2) it enables the experi-
ments to scale up efficiently [42].

The 2-g model of Q is defined as follows.

To perform sequence mining on the 2-g model, we further 
transform the sequence of tag-pairs into the sequence of 
natural numbers. Since we combine the same consecutively 
tags, the two tags appear in one pair will not be identical. 
Thus, given m different categories used in semantic sequence 
analysis, there will be P2

m
 , which is (m2 − m) pairs of ⟨ti, tj⟩ . 

After adding m pairs that start with S and m pairs that end 
with E, the total number of pairs is P2

m
+2 × m , which is 

m × (m + 1).
In this work, there are 5 different tags ( m = 5 ), and there 

are 30 different pairs, which means that there will be 30 
available combinations as units in the transformed 2-g 
semantic sequences.

To simplify the data presentation and apply the sequence 
mining algorithm, we use the natural number of the 2-g 
model combinations to represent the semantic sequence. 
Taking the semantic sequence Q

�
={S, intent, expression, 

benefit, intent, E} in Fig. 1 as an example, the 2-g model 
Bigram(Q

�
) is {<S, intent >, <intent, expression>, <expres-

sion, benefit>, <benefit, intent>, <intent, E>}. The order of 
<S, intent >e is 1 among the 30 available combinations, the 
order of <intent, expression> is 9, and so on. Therefore, the 
semantic sequence of Q

�
 is {1, 9, 23, 10, 26}.

2.2  Mining semantic sequence patterns

The semantic sequences of development emails consist of 
the numbers that denote the tag-pairs. The sequence of the 
numbers could reflect the expressing logic in the emails. 
Finding the frequently occurring sequential patterns in the 
semantic sequence of feature-request emails can reveal 
knowledge about common expressing logic when people 
describe desired features.

(2)Bigram(Q) = {⟨S, t1⟩, ⟨t1, t2⟩, ⟨t2, t3⟩,… , ⟨tn,E⟩}

Since sequential pattern mining is a topic of data min-
ing that concerns with finding statistically relevant patterns 
[51], we can extract frequent patterns by applying sequen-
tial pattern mining on the semantic sequences of develop-
ment emails. Many sequential pattern mining algorithms 
have been proposed [40, 53, 56]. In our study, we select the 
widely used apriori-based algorithm: Generalized Sequential 
Pattern (GSP) algorithm [53].

The process of mining semantic sequence patterns is 
presented in Algorithm 1. We break it down into two steps. 
First, we apply the GSP sequential pattern mining algo-
rithm on the emails that are labeled as feature requests to 
find frequent semantic sequences. Each frequent semantic 
sequence comes with its corresponding support value and 
confidence value. The support and confidence measure-
ments are typically used in data mining to evaluate rule-
based classifiers [2]. In our study, we use support and con-
fidence to help us select semantic sequence patterns. We 
select those frequent semantic sequences with support over 
0.1 as the semantic sequence patterns candidates. Second, 
we calculate the confidence of each semantic sequence 
pattern candidate among all the dataset, and rank the 
candidates by the values of confidence. We use Fn-score 
as the optimization function to output the final seman-
tic sequence patterns for the ith dataset. F1-score is also 
known as the harmonic mean of the precision and recall 
[41]. The ‘ Fn-score_HP ’ in Eq. (3) is defined for ‘High 
Precision’ objective, which means that the higher value 
of n, the higher weight of precision. For ‘High Recall’ 
objective, we simply exchange the position of precision 
and recall as shown in the definition of ‘ Fn-score_HR ,’ and 
increase the weight of recall by enlarging the value of n.

Patterns are selected as final patterns only if the Fn-score 
does not decline when they are included. By tuning the value 
of n, we can generate optimal semantic sequence patterns for 
different business objectives. For example, patterns gener-
ated by n = 10 will output rules that aim to be more precise 
than the patterns generated by n = 1.

(3)
Fn-score_HP =

(n + 1) × Precision × Recall

Precision + n × Recall

Fn-score_HR =
(n + 1) × Recall × Precision

Recall + n × Precision
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2.3  Discover feature requests from texts 
by semantic sequence patterns

In Sect. 2.2, we have generated a set of final semantic 
sequence patterns. When applying these patterns to dis-
cover feature requests from new incoming emails, the 
following steps need to be taken. First, based on their 
business objectives, users need to choose the correspond-
ing pattern from the generated patterns. For example, if 
the business objective is ‘The prediction results should 
be highly precise,’ then the user should select the pat-
terns with a higher weight of Fn-score_HP. If the busi-
ness objective is ‘The prediction results should recall more 
actual feature requests,’ then the user should select the 
patterns with the higher weight of Fn-score_HR. Second, 
when a new email is coming, we automatically obtain the 
semantic sequence by applying the same data processing 
procedure. Third, we compare the semantic sequence of 
the new email with the specified pattern. The specified 
pattern is like the ‘DNA’ of feature requests. If the given 
semantic sequence includes the full sequence of the speci-
fied pattern, then the corresponding email is predicted to 
be a feature request. Finally, our approach outputs the pre-
diction result as well as the probability.

To illustrate the application of the semantic sequence 
patterns, we take the daily work of a release team mem-
ber Adam, who aims to monitor and analyze potential new 
requirements, as an example. Suppose Adam would like to 
search only a limited number of feature requests from emails 
due to his tight schedule. He chooses the semantic sequence 
pattern P5 ([1 26, 13 17 22]) with the highest precision 
objective to help him discover a more accurate prediction on 
feature request email. When analyzing the email in Fig. 1, we 
can find that its semantic sequence is Q

�
= {1, 9, 23, 10, 26} 

as explained in Sect. 2.1. Then we compare P5 with Q
�
 , and 

we notice that Q
�

 contains the sequence of [1 26], which 
is one of the feature-request semantic sequences defined in 
P5. Therefore, we consider the Q

�
 matches with P5, and we 

recommend the incoming email as a feature request to Adam 
for further analysis.

2.4  Tools support: feature request analyzer 
and detector (FRAD)

Based on the proposed approach, we implement an automati-
cally Feature Request Analyzer and Detector (FRAD) online 
system that can identify feature requests from emails. Given 
a raw email and the selected pattern, FRAD will first auto-
matically tag each sentence by using the API service pro-
vided by Shi et al. [49]. Second, FRAD generates the seman-
tic sequence for the given email as illustrated in Sect. 2.1. 
Third, FRAD will match the semantic sequence with the 
selected pattern. Only if the semantic sequence contains the 
selected pattern, the given email will be predicted as a fea-
ture request. More details can be found on our project site: 
http:// 39. 104. 76. 212: 8082/.

3  Experimental setup

In order to evaluate the effectiveness of our approach, three 
research questions are proposed in Sect. 3.1. To answer our 
research questions, we select and preprocess a set of open 
source projects in Sects. 3.2 and 3.3. In Sect. 3.4, we intro-
duce measurements that are designed to evaluate the perfor-
mance of the semantic sequence patterns. Then, we describe 
a detailed experiment design in Sect. 3.5.

3.1  Research questions

In our study, we investigate the performance of our approach. 
Specifically, the experiment aims at addressing the following 
research questions:

RQ1 (Effectiveness)  Can the proposed approach effec-
tively discover feature requests from emails in the Ubuntu 
community? This research question aims at investigating the 
kind of the semantic sequence patterns that can be generated 

http://39.104.76.212:8082/
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from the Ubuntu training dataset, and to what level the cor-
responding performances of these patterns can achieve on 
Ubuntu testing dataset.

RQ2 (Generalizability) Can the semantic sequence 
patterns mined from Ubuntu community work well on other 
projects? In RQ1, we train the semantic sequence patterns 
from Ubuntu training dataset, and evaluate in the Ubuntu 
testing dataset. However, it is arguable whether the semantic 
sequence patterns trained from Ubuntu project can apply to 
other projects. This research question aims to alleviate that 
concern by applying the semantic sequence patterns to other 
open source projects, and analyzes the performances.

RQ3 (Advantage) How can the proposed approach 
perform when compared to the state-of-the-art approaches 
in identifying feature requests from emails? This research 
question aims at comparing the performances of generated 
patterns with the existing approaches in terms of precision, 
recall, f1-score, AUC, and positive.

3.2  Subject projects

Ubuntu is an open source operating system software based 
on the Debian architecture. It is one of the distribution sys-
tems of Linux. Ubuntu has been releasing updated versions 
nearly every six months since its initial release in 2004. 
It has a large community with lots of active contributors 
internationally; thus there are a large quantity emails that 
are created and exchanged in its mailing lists. Due to the 
long history with consistent releases and a large volume of 
emails, we take the mailing lists of the Ubuntu community 
as the training dataset. In order to evaluate the performances 
as well as examine the generalizability of our approach, we 
conduct cross-project validation on emails of four open 
source projects from both Apache and Eclipse communities: 
Activemq, Aspectj, HDFS, and Jetty. All the mailing list dis-
cussions among developers are archived on Ubuntu Mailing 
lists [16] since December 2006. In our study, we chose one 
of the mailing lists Ubuntu-devel-discuss [17] that is des-
ignated for communications between users and developers.

3.3  Data preparation

3.3.1  Data filtering

Typically, messages in the mailing list are organized in the 
form of threads. Developers first launch a mailing list thread 
by posting a head email that is for discussion, and then other 
developers reply to the same thread to share ideas, informa-
tion, or suggestions. When preparing data for feature request 
discovery, we first collect the head emails from mailing list 
threads. We collect 4204 raw head emails in the Ubuntu-
devel-discuss mailing list threads from December 2006 to 
July 2017. Typically the head email contains new ideas, 
questions, or requests, and follows by a series of further 
discussions. We ignore those threads that started with replies 
to other threads. After threads selection, we end up with 
3434 head emails as our input data.

To conduct cross-project validation, we also select four 
popular open source projects from both Apache and Eclipse 
communities: ActiveMQ, AspectJ, HDFS, and Jetty . We tar-
get the mailing lists for users, and collect head emails from 
threads posted from the project creation time to Dec 2017. 
We randomly sample 100 emails out for each project as the 
testing dataset, and manually exclude unreadable emails:

• Emails that are written in non-English languages;
• Most of the emails are code or stack traces;
• Low-quality emails such as emails with many typos and 

grammatical errors.

The details of selected emails are shown in Table 2, and the 
last column ‘FRs’ denotes the number of feature requests.

3.3.2  Sampling

As labeling emails into the feature-request class or non-fea-
ture-request class requires thoroughly reading the textual 
contents, it involves heavy human resources during the labe-
ling activity. Limited by the labeling resources, we perform 
an incremental iterative sampling strategy to prepare the 
dataset from the 3434 head emails taken from the Ubuntu 
community.

The incremental iterative sampling strategy includes 
three steps: (1) We randomly sample x percent of total 
emails without replacement that can be labeled within 
a limited cost, and define as dataset Si ; (2) we mine the 
semantic sequence patterns Pi from the united dataset ⋃

i=1 Si ; (3) we compare the similarity between Pi−1 and 
Pi . If the similarity is over 80%, then we consider the Pi is 
representative and stop the sampling process. Otherwise, 
we repeat the process from the first step.

Table 2  Cross-project validation subjects

a  http:// mail- archi ves. apache. org/ mod_ mbox/ activ emqus ers
b  http:// dev. eclip se. org/ mhona rc/ lists/ aspec tjuse rs
c  http:// mail- archi ves. apache. org/ mod_ mbox/ hadoop- hdfs- user
d  https:// accou nts. eclip se. org/ maili ng- list/ jetty- users

Project Commu-
nity

Mailing list Emails Samples FRs

Activemq Apache Activemq-usersa 2996 99 19
Aspectj Eclipse Aspectj-usersb 3232 100 24
HDFS Apache Hadoop-hdfs-userc 2330 95 26
Jetty Eclipse Jetty-usersd 1604 100 18

http://mail-archives.apache.org/mod_mbox/activemqusers
http://dev.eclipse.org/mhonarc/lists/aspectjusers
http://mail-archives.apache.org/mod_mbox/hadoop-hdfs-user
https://accounts.eclipse.org/mailing-list/jetty-users
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The similarity of two sets of semantic sequences pat-
terns Qi and Qj is the proportion of their intersection ele-
ments over the size of Qj . Note that we define the inter-
section of Qi and Qj as the set of elements of Qj that are 
the subset of elements in Qi.

In this study, we randomly sample 2% emails (around 
70 emails) for each iteration according to our limited 
labeling resource. After 4 iterations, we obtain the repre-
sentative patterns for the Ubuntu community. Moreover, 
to validate the patterns in a more comprehensive way, 
we build nearly the same amount of data for testing. As 
a result, we have 259 emails for training and 248 emails 
for testing as shown in Table 3. 

3.3.3  Label ground‑truth emails

We labeled emails that are used as the ground-truth data-
set for method definition and performance evaluation. 
To guarantee the correctness of the labeling results, we 
built an inspection team, which consisted of two sen-
ior researchers with seven Ph.D. candidates and three 
senior developers. All of them either have done inten-
sive research work with software development or have 
been actively contributing to open source projects. We 
divided the team into two groups. Each group consisted 
of a leader (senior researcher) and five members. The 
leader trained members on how to label and provided 
consultation during the process. The labeling results 
from the members were reviewed by the leader, while 
results from the leaders were reviewed by other leaders. 
We accepted and included emails to our dataset when the 
emails received full agreement among the groups. When 
an email received different labeling results, we hosted a 
discussion with all the 12 people to decide through vot-
ing. If the majority of people vote for a particular class 
(i.e., feature-request class or non-feature-request class), 
then we labeled the email with the class that was sup-
ported by the majority.

(4)Similarity(Qi,Qj) =
|Qi ∩ Qj |

|Qj |

3.4  Evaluation measurements

In order to evaluate whether the generated seman-
tic sequence patterns can effectively identify feature 
requests from new incoming emails, we use five meas-
urements to evaluate the prediction performance: preci-
sion, recall, F1-score, positive, and AUC.

Precision, recall, and F1-score are commonly used 
measurements for performance assessment in classifica-
tion tasks [41]. Precision represents the proportion of 
items labeled as belonging to class C that indeed belong 
to C. Recall represents the proportion of items from class 
C was labeled as belonging to Class C. The F1-score is 
the weighted average of precision and recall.

Positive [47] is defined as the proportion of the items 
labeled as belonging to class C among all the labeled 
ones, where TP, FP, TN, and FN represent for true posi-
tive, false positive, true negative, and false negative, 
respectively. In our study, the positive measurement can 
reflect the proportion of emails that are predicted to be 
feature requests. When a further analysis of the predic-
tion results is required, this measurement can indicate 
the effort of such an analysis on the prediction results.

Area under ROC curve (AUC) is the area of the two-
dimensional graph in which false positive rate is plot-
ted on the X axis and true positive rate is plotted on 
the Y axis [20]. AUC can avoid performance inflation 
when evaluating on imbalanced data. The AUC value 
varies between 0 and 1, and higher values indicate better 
performance.

3.5  Experiment design

This section describes the designs of the experiments 
in detail.

Experiment I (Effectiveness) In this experiment, 
we first obtain the semantic sequence patterns for differ-
ent optimization objectives from the Ubuntu training data-
set. Then, we conduct within-project validation for those 
obtained patterns on the testing dataset from the Ubuntu pro-
ject. There are two types of predefined business objectives:

• Objectives for achieving high precision: According 
to Eq. (4), we gradually increase the weight n of Fn-
score_ HP from 1 to 10 to achieve high precision objec-
tives.

(5)Positive =
TP + FP

TP + FN + TN + FP

Table 3  Ubuntu train and test dataset

Dataset # Emails # FRs #Sentences

Train 1 65 20 625
2 132 33 1327
3 197 43 2039
4 259 65 2717

Test 1 248 51 2497
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• Objectives for achieving high recall: We gradually 
increase the weight n of Fn-score_HR from 2 to 10 to 
achieve high recall objectives.

For each optimization objective, we use the GSP algorithm 
to mine its corresponding stable semantic sequence patterns 
on the five prepared training datasets incrementally. For each 
distinct stable semantic sequence pattern, we apply it on the 
testing dataset with 248 emails from the Ubuntu project, and 
observe the five measurements for prediction performance.

Experiment II (Generalizability) To address RQ2, we 
conduct cross-project validation for the obtained semantic 
sequence patterns on other open source projects (activemq, 
aspectj, hdfs, and jetty). After preparing the 4 testing data-
set from the open source projects, we apply the semantic 
sequence patterns obtained in RQ1 on each testing dataset 
to predict whether emails are feature requests or not, and 
observe the five measurements for prediction performance.

Experiment III (Advantage) To compare the obtained 
semantic sequence patterns with the existing approaches, we 
selected DECA [18], which is the state-of-the-art approach 
for analyzing development emails content. It is used to clas-
sify the sentences of emails into feature request, opinion ask-
ing, problem discovery, solution proposal, information seek-
ing, and information giving by using linguistic rules. Since 
the dataset provided by DECA is processed into numeric 
vectors2 rather than the original textual emails, we cannot 
apply our approach on DECA dataset directly. Therefore, 
we apply DECA to the five testing dataset (i.e., Ubuntu_test, 
activemq, aspectj, hdfs, and jetty). We use the java API pro-
vided by DECA3 to annotate the emails, and defined the 
emails that contain sentences that are predicted to be ‘feature 
request’ as feature request emails.

We select four representative machine learning 
approaches including Naive Bayes, J48, Logistic Regres-
sion, and SVM [43] to build classifiers from the 259 training 
dataset, and reported performances on the testing dataset, 
including the Ubuntu testing dataset and the four testing 
dataset from activemq, aspectj, hdfs, and jetty. We processed 
the training and testing dataset by applying vector format, 
STOP word filter, and TF-IDF weights to represent emails 
[44].

Moreover, we implement two deep learning approaches, 
TextCNN [29] and TextRNN [32] models by using the Keras 
framework. To obtain better performance, we use the grid 
search [11] method to tune the hyperparameters. In the 
word embedding layer of the model, the dimension of the 
word vector is 50 and the input length is 200. For TextCNN 
model, we set 3 different convolution kernel sizes which are 
3, 4, and 5, respectively. For TextRNN model, we use the 

LSTM layer and set the number of hidden layer neurons to 
128. To prevent overfitting, we set the dropout to 0.5 drop 
rate. We use Adam as the optimizer and cross-entropy as the 
loss function. In addition, we set the batch size to 8, meaning 
that it takes 8 data samples per training. We also set epochs 
to 50 and patience to 10, meaning that the entire training 
process needs 50 epochs, but when the performance on the 
validation set did not improve for 10 epochs, the process 
will be stopped.

4  Results and analysis

This section reports the analysis of the results achieved aim-
ing at answering our research questions.

4.1  Answering RQ1 (effectiveness)

By applying the proposed approach on the Ubuntu training 
dataset, we obtained 10 different semantic sequence pat-
terns over 19 weights of F_n-score for different objective 
types. We define them as P1 to P10, respectively, where 
P1 is patterns for the regular F_1-score, P2–P5 are for high 
precision objectives, and P6 to P10 are for high recall objec-
tives. Some semantic sequence patterns can meet multiple 
objectives at the same time from observing the 19 stable 
patterns. For example, P4 can meet the high precision 
objectives on weight between 5 and 8 as shown in Table 4. 
‘Trained Emails’ column represents the number of emails 
used for training stable patterns. We can see that except P2, 
all the other patterns become stable at the 3rd Ubuntu train-
ing dataset with 197 emails, which means that the proposed 
approach can obtain stable patterns on the Ubuntu training 
dataset quickly. ‘Semantic Sequence Patterns’ column repre-
sents the semantic sequence patterns that are mined by GSP 
from the training dataset. We append the bigram format of 
the semantic sequence patterns in the last column for more 
information.

To assess the performances of the 10 patterns, we apply 
these patterns on the Ubuntu testing dataset, which contains 
248 new emails. We group the performances into a high 
precision patterns group and a high recall patterns group 
as shown in Figs. 2 and 3. The bar graphs in Figs. 2 and 3 
denote the number of elements in each pattern. We can see 
that as the weights increase, the number of elements in the 
high precision patterns becomes smaller, and the number 
of elements in the high recall patterns becomes larger. The 
highest precision pattern P5 has 2 elements, and the highest 
recall pattern P10 has 11 elements.

2 https:// www. ifi. uzh. ch/ dam/ jcr: 00000 000- 14e5- 028d- ffff- ffffa ffc5e 
6c/ Repli catio npack ageDE CA. zip.

3 https:// www. ifi. uzh. ch/ dam/ jcr: 00000 000- 5b34- b3d9- 0000- 00004 
910bd 8d/ DECA_ API. zip.

https://www.ifi.uzh.ch/dam/jcr:00000000-14e5-028d-ffff-ffffaffc5e6c/ReplicationpackageDECA.zip
https://www.ifi.uzh.ch/dam/jcr:00000000-14e5-028d-ffff-ffffaffc5e6c/ReplicationpackageDECA.zip
https://www.ifi.uzh.ch/dam/jcr:00000000-5b34-b3d9-0000-00004910bd8d/DECA_API.zip
https://www.ifi.uzh.ch/dam/jcr:00000000-5b34-b3d9-0000-00004910bd8d/DECA_API.zip
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In Fig. 2, the values of F1-score sharply decline after P2, 
while the values of AUC remain stable, which only slightly 
decline from 70 to 60%. Since AUC measures the accuracy 
of a classifier on all classes, we consider that all the five 
patterns can reach a relatively good accuracy on classify-
ing feature requests from emails. The values of positive 
decline from 18 to 1%, which means the proportion of posi-
tive predictions over the whole test dataset is reducing. The 
precision is gradually increasing from 59 to 100% (slightly 
decline at P4), while the values of recall reduce from 51 to 
4%. Taking the five measurements into consideration, we 
can see that as the weights increase, the trained patterns 
become more focused on a certain type of expressing logic. 
They can only recall a small proportion of actual feature 
requests, but the predicted emails are very likely to be actual 

feature requests, while the accuracy level of both sides can 
remain stable.

Figure 3 shows the performances of patterns generated by 
high recall objectives. By raising the weights of recall, the 
recall of the generated patterns increases from 53 to 73%, 
and the precision reduces from 50% to 26%. The values of 
AUC  remain stable. They only slightly decline from 73 to 
64%, which indicates a relatively good accuracy on clas-
sifying feature requests from emails. Taking the five meas-
urements into consideration, we can see that as the weights 
increase, the trained patterns are likely to include more 
types of expressing logics. Although the precision turns to 
lower values, the patterns can recall most of the real feature 
requests, while the accuracy level of both sides can remain 
stable.

Table 4  Details of the 10 semantic sequence patterns

Objective type ID Weight Trained emails Semantic sequence patterns Semantic sequence patterns in bigram

 High precision P1 1 197 [1, 6, 10, 2] {<S,intent>},{<intent,benefit>},{<benefit,intent>
},{<S,benefit>}

P2 2 259 [1, 6, 10, 2 30] {<S,intent>},{<intent,benefit>},{<benefit,int
ent>}, {<S,benefit>,<exp,E>}

P3 [3, 4] 197 [1 26, 1 17, 6, 10] {<S,intent>,<intent,E>}, 
{<S,intent>,<drawback,exp>}, {<intent,benefit 
>},{<benefit,intent>}

P4 [5, 8] 197 [1 26, 1 17 22, 10] {<S,intent>,<intent,E>}, 
{<S,intent>,<drawback,exp>, <exp,intent>}, 
{<benefit,intent>}

P5 [9, 10] 197 [1 26, 13 17 22] {<S,intent>,<intent,E>}, 
{<S,intent>,<drawback,exp>, <exp,intent>}

High Recall P6 2 197 [1, 6, 10, 18, 2] {<S,intent>},{<intent,benefit>}, 
{<benefit,intent>}, {<example,intent>},{<S,b
enefit>}

P7 3 197 [1, 6, 10, 18, 2, 9 24, 22 26] {<S,intent>},{<intent,benefit>},{<benefit,int
ent>}, {<example, intent>},{<S,benefit>}, 
{<intent,exp>,<exp,drawback>}, 
{<exp,intent>,<intent,E>}

P8 4 197 [1, 6, 10, 18, 2, 26, 8, 9 24, 17 22, 13] {<S,intent>},{<intent,benefit>},
{<benefit,intent>}, {<example, 
intent>}, {<S,benefit>},{<intent,E>}, 
{<intent,example>}, 
{<intent,exp>,<exp,drawback>}, 
{<drawback,exp>,<exp, intent>}, 
{<benefit,exp>}

P9 [5, 7] 197 [1, 6, 10, 18, 2, 26, 27, 8, 9 24, 17 22, 13] {<S,intent>},{<intent,benefit>},
{<benefit,intent>}, {<example, 
intent>}, {<S,benefit>},{<intent,E>}, 
{<benefit,E>},{<intent, example>}, 
{<intent,exp>,<exp,drawback>}, 
{<drawback,exp>, 
<exp,intent>},{<benefit,exp>}

P10 [8, 10] 197 [1, 6, 10, 18, 2, 26, 27, 8, 24, 17 22, 13] {<S,intent>},{<intent,benefit>},{<benef
it,intent>}, {<example, intent>},{<S,b
enefit>},{<intent,E>}, {<benefit,E>}, 
{<intent, example>},{<exp,drawback>}, 
{<drawback,exp>,<exp,intent>}, 
{<benefit,exp>}
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Summary The Although P5 can achieve 10 patterns 
mined from the Ubuntu train dataset can effectively classify 
new emails in the Ubuntu-test dataset that they can reach the 
average level of precision and recall at 74% and 64%, with 
an overall accuracy of 69%.

4.2  Answering RQ2 (generalizability)

Since we use emails from the same project to evaluate the 
performance in RQ1, there may exist generalization issues 
that the high level of precision and recall only exists in the 
Ubuntu project. To investigate whether the obtained seman-
tic sequence patterns can also apply to other projects, we 
further extend the testing dataset by including four other 
open source projects as introduced in Table  3.

Figure 4 shows the performances on the four other 
open source projects, along with the performance on the 
Ubuntu test dataset. We highlight the patterns that can 
achieve relatively good performances. For high predic-
tion patterns (P1–P5), we can see that performances on 

the four new open source projects are similar or even 
better than the Ubuntu-test dataset, where Jetty has bet-
ter performance than the Ubuntu testing dataset among 
Precision, Positive, and AUC. Considering the five pat-
terns, P2 might be a better trade-off choice for high 
precision purpose. Both AUC and F1-score are sharply 
declining after P2, but the values of precision except Jetty 
remain slightly changed after P2. For high recall patterns 
(P6–P10), we can see almost all the four new projects 
achieve better performances than the Ubuntu testing data-
set. We consider that P7 might be a better trade-off 
choice for high recall objective. The values of AUC and 
F1-score on most projects largely declined after P7, but 
the values of recall increase slowly.

We also observe that the patterns achieve good perfor-
mances on the Ubuntu test dataset, as well as the other 
four projects. Moreover, the patterns achieve even bet-
ter results in terms of precision, recall, and F1-score on 
the other four projects. For example, the Jetty project 
achieves almost the best performances in all the metrics, 
which indicates that contributors are likely to use certain 
semantic sequences when expressing feature requests. 
This phenomenon confirms that the patterns mined from 
the Ubuntu community can also work well on other tex-
tual resources. We can also infer that, even though there 
are wide cultural diversities in a large open source com-
munity, contributors are likely to follow some common 
patterns when describing feature requests in emails.

Summary The patterns trained from the Ubuntu data-
set are also suitable for other projects. The average of 
precision for high prediction patterns among the four new 
testing dataset is 77%, and the average of recall for high 
recall patterns is 91%, which confirms that contributors 
from the different community are likely to follow similar 
patterns when expressing feature request in emails.

4.3  Answering RQ3 (advantage)

In this section, we build prediction models with seven differ-
ent existing classification approaches, and use these models 
to discover feature requests in the five testing dataset. We 
compare their performances with our extracted patterns. All 
the learning-based approaches are trained from the Ubuntu 
training dataset except DECA. DECA uses linguistic rules 
that are already built from other projects, which does not 
have any training process.

Figure 5 illustrates the max, min, and mean performances 
of the seven classification approaches on testing projects. 
For precision, we can see that the high-precision patterns 
(i.e., P1–P5) significantly outperform the other baselines. 
P3, P4, and P5 have the highest precision results, while most 
of the learning-based approaches and DECA are below 50%. 
For recall, we can see that the high-recall patterns could 

Fig. 2  Performance of ‘high precision’ patterns on non-fitted Ubuntu 
testing dataset

Fig. 3  Performance of ‘high recall’ patterns on non-fitted Ubuntu 
testing dataset
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Fig. 4  Performance for patterns on cross-projects

Fig. 5  Performance comparison between semantic sequence patterns and other approaches
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achieve high recall values among most of the five projects. 
Meanwhile, P1 and P2 could also achieve relatively good 
results. DECA and six learning-based approaches are mostly 
below 60%. For F1-score, P1, P2, P6, P7, P8, and P9 are 
higher than other approaches. For positive, we can see that 
P3, P4, and P5 could reach the lowest values, while the pre-
cision is 100% correct as shown in the precision figure. P1 
and P2 have similar positive values with DECA and the six 
learning-based approaches, but their F1-score and AUC are 
much higher. For AUC , we can see that the distribution of 
high performances is similar to the F1-score figure. Most of 
our patterns are above 0.7.

We further analyze why the DECA approach could not 
work well on the feature-request emails identification task. 
First, DECA utilized 36 linguistic rules [e.g., (someone) 
want to (something), and (something) should/could be 
(verb)] to identify sentences expressing feature requests. 
Those rules focus only on the lexical patterns of sentences, 
while the FRA tagging technique we adopted focuses on 
lexical, syntax, and semantic patterns. In some cases, pure 
lexical patterns could not provide precise annotations. For 
example, the sentence ‘It makes harder for me when I want 
to ‘cd’ those directories in the terminal’ is classified as a 
feature request by DECA, as it matches with the ‘[some-
one] wants to [something]’ lexical pattern. But it is express-
ing complaints about the CD operation. FRA classifies this 
sentence with ‘Drawback,’ which provides a more accurate 
annotation result for further analysis. Second, our approach 
mines the semantic sequence patterns of a given email, 
which could obtain more rich information about the context 
of each sentence. By considering the context information, 
our approach has the opportunity to identify feature-request 
emails more accurately. For example, an email contains the 
sentence ‘I need some advice with message groups and I’ve 
failed to find a solution in the net.’ The sentence is tagged 
as feature-request by DECA, and the email containing the 
sentence is classified as a feature request as well accord-
ing to our experiment definition. But the email is asking 
for advice rather than requesting features. When analyzing 
the contextual sentences, our approach could not match the 
email with our semantic sequence patterns. Thus, a nega-
tive prediction is made by our approach, which is a correct 
prediction in this case.

For the six learning-based approaches, the average 
F1-score is only around 30%. The reasons why our approach 
noticeably outperforms the six learning-based text classifica-
tion models are: those text classification algorithms are not 
trained sufficiently from the limited training datasets, while 
our approach mine the expressing logic, i.e., the semantic 
sequence patterns, which is easier to train than the text clas-
sification tasks.

Summary When predicting whether emails are fea-
ture requests, most of our patterns outperform the existing 
approaches, and could achieve good performances in terms 
of precision, recall, F1-score, and AUC.

5  Discussion and future work

In this section, we discuss the implications of our results and 
possible ideas for future work.

5.1  Implications on how developers describe 
intentions

In our study, we tag each sentence in the feature-request 
emails into different categories according to its content. The 
sequence of tags forms a semantic sequence, which denotes 
the semantic logicality on how developers express feature 
requests. The semantic sequence patterns indicate the fre-
quent logic flows that are commonly appearing in express-
ing feature requests. Unlike traditional ML approaches, the 
outputs of our approach are rule-based patterns, thus making 
them well suited for the software engineering tasks. As one 
of the results of our study, 10 semantic sequence patterns 
are identified by leveraging mining algorithms and objec-
tive optimization strategies. The result indicates that users 
are likely to follow some logical patterns to describe their 
intentions when requesting features. We believe that the pro-
posed approach can contribute to the logic-based learning 
approaches [3].

By further analyzing the generated semantic sequence 
patterns, we might be able to classify feature requests 
according to their expression logics. For example, P5 pro-
vides two elements. One is {<S,intent>, <intent, E>}, 
and another is {<S, intent>, <drawback, expression>, 
<expression, intent>}. The first pattern may match emails 
that describe completely new ideas. The second pattern 
may match emails that complain about the existing system 
functionalities. Thus we may classify emails into new-idea 
feature requests and complaint feature requests based on 
the matching patterns. Moreover, analysis of the generated 
semantic sequence patterns may empirically confirm the 
existing personality and psychology studies on how people 
describe intentions. For example, five conditions have been 
reported on intentional behaviors determination [24, 34, 35]: 
(1) a desire for an outcome, (2) beliefs about a behavior 
leading to that outcome, (3) a resulting intention to perform 
that behavior, (4) the skill to perform the behavior, and (5) 
awareness of fulfilling the intention. In the generated pat-
terns, we can recognize sequences that deliver similar infor-
mation. For example, in P9, <S,intent> might fit condition 
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(1), <intent, benefit> might fit condition (2), and <intent, 
expression> might fit the other three conditions. Our results 
can provide practical evidence for those proposed models.

5.2  Balancing the cost and risk

Discovering feature requests from a large amount of emails is 
important for both open source and industrial organizations to 
maintain and improve their systems. Instead of analyzing every 
posted email, our patterns can narrow down the analysis scope 
to a smaller set. The 10 different patterns provided in our study 
can accommodate various objectives. For organizations that 
would like to obtain as many feature requests as they desire, 
P10 can be applied and gives a 92% recall on feature request 
emails by predicting 57% emails to be feature request emails 
(shown in Fig. 3). For organizations that would like to obtain 
a more accurate prediction on feature request emails, they can 
select P1–P5. Although P5 can achieve 84% precision on pre-
dicting feature request emails, it can only achieve the recall of 
12%. P2 is more recommended since it can achieve 72% recall 
on the precision of 71%. Only 22% of the emails are predicted 
to be feature requests.

5.3  Extensive application

Social media, as the collective of online communication chan-
nels, includes many textual resources that may contain hidden 
feature requests. Our approach focuses on the textual content 
of development emails. It can also be extended to other similar 
resources, such as discussions in the issue tracking systems, 
comments in open forums, and project reviews. However, 
there are two limitations when applying our approach. First, 
our approach is constructed based on mining the semantic 
sequences extracted from textual artifacts. If the textual arti-
facts contain few semantic sequences, then the sequence min-
ing algorithm will not work well and may be inefficient to 
find patterns. Therefore, the input data need to be filtered by a 
threshold on the length of sentences. Based on our experience, 
a threshold over 4 is recommended. Second, our approach is 
designed to analyze natural language artifacts. For textual 
resources that contain a large proportion of source code, fil-
tration of source code from natural language text is needed 
before applying the proposed approach. The study proposed 
by Bacchelli et al. [6] on classifying email contents can help 
filter out non-natural language text emails. Moreover, the pro-
posed approach can also help rebuild software requirements 
specifications for open source projects, which are often found 
lacking of high-quality documentation.

In future work, we plan to enlarge the tag categories by 
investigating more semantic categories. For example, we 
can apply sentiment analysis to define ‘like’ and ‘hate’ tags. 

Then we can use the enlarged tags to generate new patterns, 
and try to improve the prediction performances of the gen-
erated patterns. We also plan to conduct further analysis of 
the generated patterns to report how developers express fea-
ture requests empirically. In addition, we can refine feature 
requests into detail topics, such as new-idea feature requests 
and complaint feature requests by leveraging the matching 
patterns.

6  Threats to validity

External Validity The results of our study may not gen-
eralize beyond the project we evaluated. However, emails 
are found to be quite similar among different open source 
communities. To mitigate this threat, we had a set of cri-
teria when selecting suitable projects. We picked Ubuntu, 
which is a popular and well-known open source project that 
has a large international community of contributors and a 
mature communication system via mailing lists. Moreover, 
we perform cross-project validation on the other four open 
source projects. The results show that our approach can also 
be generalizable to these projects, which largely reduces the 
external threat.

Internal Validity Threats to internal validity may come 
from the process of manually labeled emails to be feature 
requests or not. The accuracy of labeling has impact on 
our results. We understand that such a process is subject to 
mistakes. To reduce the threat, we build an inspection team 
to reach agreements on different options as introduced in 
Sect. 3.3.3. To answer RQ3, we rely on human judgments to 
classify emails, which is an error-prone process. To allevi-
ate this threat, we gave a set of very specific instructions to 
each participant to clarify and unify the annotation process. 
Another threat may lie in the direct usage of existing work 
to automatically tag sentences in emails. Since the existing 
tagging approach is not one hundred percent correct, bias 
may be introduced by the misclassification of the tagging 
approach. However, the tagging approach has been proved 
to perform steadily well on completely new projects (with 
84–87% correctness) by Shi et al. Moreover, we randomly 
sampled 100 auto-tagged sentences in emails, and 85% of 
them were correct. We consider that the tagging results are 
also reliable in feature request emails. Therefore, this threat 
has minor impact to the results.

Construct Validity The construct threats relate to the 
suitability of evaluation metrics. We utilize precision and 
recall to evaluate the performance, in which we use the 
manually labeled emails as ground-truth when calculating 
the performance metrics. The threats might come from the 
process of manual inspection and labeling. We understand 
that such a process is subject to mistakes. To reduce that 
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threat, we build two groups to reach agreements on differ-
ent options.

7  Related work

7.1  Automated feature requests detection

Rodeghero et al. [36] presented an automatic technique that 
extracted useful information from the transcripts of devel-
oper-client spoken conversations to construct user stories. 
They used machine learning classifiers to determine whether 
a conversation contains user story information or not.

Maalej and Nabil [33] leveraged probabilistic techniques 
as well as text classification, natural language processing, 
and sentiment analysis techniques to classify app reviews 
into bug reports, feature requests, user experiences, and rat-
ings. Their results showed that the classification can reach 
the precision between 70 and 95% and recall between 80 and 
90% actual results.

Vlas and Robinson [55] proposed a grammar-based 
design of software automation for the discovery and classifi-
cation of natural language requirements found in open source 
projects repositories. Herzig et al. [26] manually examined 
more than 7000 issue reports and discussed the impact of 
misclassification of bugs in the bug databases of five open 
source projects. Their results showed that 39% of files 
marked as defective actually include new features, updates 
to documentation, or internal refactoring. The authors sug-
gested that humans should always be involved when dealing 
with the posted issue reports. Merten et al. [38] investigated 
natural language processing and machine learning features 
to detect software feature requests in issue tracking systems. 
Their results showed that software feature requests detec-
tion can be approached on the level of issues and data fields 
with satisfactory results. Merten et al. [37] also investigated 
how requirements are communicated in issue tracking sys-
tems by manually reviewing 200 issues. They categorized 
the text and reported on the distribution of issue types and 
information types. Their results showed that information 
with respect to prioritization and scheduling can be found 
in natural language data. Antoniol et al.  [4] investigated 
whether the text of the issues posted in bug tracking sys-
tems is enough to classify them into corrective maintenance 
and other kinds of activities. They alternated among various 
machine learning approaches such as decision trees, naive 
Bayes classifiers, and logistic regression to distinguish 
enhancement apart from other issues posted in the system.

Cledland-Huang et al. [15] designed automatic forum 
management (AFM) system, which was used to automati-
cally detect duplicated feature requests that have been 
already posted in the issue tracking systems. Lin et al. [48] 
proposed an approach to automatically identify redundant 

feature requests that have requested features that have been 
already implemented by applying the feature tree model.

Summing up, previous approaches differ from our work 
as they:

• identified feature requests from spoken conversations 
[36];

• identified feature requests from app reviews [33];
• identified feature requests from project repositories [55] 

and issue tracking systems [4, 26, 37, 38]
• detected duplicated and redundant feature requests in 

issue tracking systems [15, 48].

We retrieve hidden feature requests from development 
emails, which complements the existing studies on auto-
matically detecting feature requests.

7.2  Email contents analysis

Di Sorbo et al. [52] proposed a classification approach to 
classify the sentences in development emails according to 
their purposes using natural language parsing techniques.

Furthermore, Huang et al. [28] found that Di Sorbo’s 
work cannot be generalized to discussions in issue tracking 
systems, and they addressed the deficiencies of Di Sorbo 
et al.’s taxonomy by proposing a convolution neural net-
work (CNN)-based approach. According to the purposes 
of sentences in emails, their work identified specific email 
fragments that can be used for specific maintenance tasks. 
Their work can classify Feature Requests at the sentence 
level, whereas we take the contextual information into 
consideration and focus on identifying the main intent of 
an email instead of email fragments.

Bacchelli et al. [6] presented an automatic approach to 
classify email content at line level into five language cat-
egories: Natural Language text, source code, stack traces, 
code patches, and junk. The results were validated through 
cross mailing list validation. Their work focuses on puri-
fying the emails by finding natural language text, while 
we concern about whether an email contains any feature 
requests. Our study can complement their outputs as a 
deeper analyzer. Kiritchenko and Matwin [30] presented 
a paper on email classification by combining labeled and 
unlabeled data. Authors tried to define classes as inter-
esting and uninteresting categories. VSM was showed 
to benefit from the co-training process proposed in the 
paper. They predict emails to be interesting or uninterest-
ing, while we predict emails to be feature request or non 
feature request. Zhang et al. [57] extracted information 
from mailing lists to predict software defects. Metrics were 
summarized from the information. The results showed that 
defects were related to specific structures that appeared 
in mailing lists such as the content and thread structures. 
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They predict defects from emails, while we predict feature 
requests. Corston-Oliver et al. presented an approach to 
provide task oriented-summary of email messages by iden-
tifying task-related sentences in development messages. 
Mining of intention in developers’ discussions provides a 
higher level of abstraction. The intents of the sentences are 
used to summarize tasks in their work, while we analyze 
the intents based on feature requests to identify semantic 
sequence patterns of feature requests.

Morales-Ramirez et al. [39] combined speech-act anno-
tation and sentiment features to identify intentions, deon-
tic mood, and length of the textual user feedbacks through 
sentence parsing. Multiple types of speech-act were used to 
indicate different purposes. For example, the combination 
of Requestive and Positive speech-acts may give a hint of a 
possible requirement. Although their work provided infor-
mation regarding the correlation between speech-acts types 
and the issue types, it didn’t provide a way to extract features 
from these issues and comments.

7.3  Automatic email classification

Emails are one of the crucial sources of communica-
tion, and the volume continues to grow. Many researches 
devote to automatic email classification, such as spam 
detection, multi-folder categorization, and phishing email 
classification.

Spam detection aims to develop binary classifiers that 
classify emails into spam or ham. Barushka and Hajek [10] 
proposed a regularized deep multi-layer perceptron neural 
network as a binary classifier, with 99.89% of accuracy on 
the SpamAssassin dataset and 98.76% of accuracy on the 
Enron-Spam dataset. Bahgat et al. [9] proposed a model 
based on a semantic feature selection with an SVM classi-
fier, with 94% accuracy on Enron-Spam Dataset. Faris et al. 
[27] presented a binary model based on a Genetic Algorithm 
as a feature selector and the Random Weight Network as a 
classifier, which reached 96.70% of accuracy on the Spa-
mAssassin dataset.

Multi-folder categorization approaches proposed multi-
class classifiers that categorize emails into various user-
defined email directories. Kiritchenko et al. [31] employs 
temporal features, such as day of the week and time of the 
day, to classify email messages into classes. They extracted 
relevant temporal features from emails and combined them 
with conventional content-based classification approaches. 
Chakravarthy et al. [14] presented a supervised learning 
approach that leverages graph mining techniques for multi-
folder email classification. The experimental results showed 
significant performance improvement over Naive Bayesian 
approach for varied emails drawn from different domains. 
Aery et al. [1] proposed graph mining techniques for binary 
classification of documents in a delimited context, based on 

the occurrence of terms in the structured emails. The pro-
posed approach outperformed the Naive Bayes and reached 
more than 90% of accuracy with a large size of folders.

Phishing email classification researches provided binary 
classifiers that categorize emails into phishing or ham. Fang 
et al. [19] proposed THEMIS which incorporated recurrent 
convolutional neural networks (RCNN) with multilevel vec-
tors and attention mechanism. They modeled emails at the 
email header, the email body, the character level, and the 
word level simultaneously. The experimental results show 
that the overall accuracy of THEMIS reaches 99.848%. 
Bagui et al. [8] applied deep semantic analysis, machine 
learning, and deep learning techniques, to capture inherent 
characteristics of email text, and classify emails as phish-
ing or non-phishing. Sankhwar et al. [45] proposed EMUD 
which focused on relevant URLs features that discriminate 
between legitimate and malicious/phishing URLs. This 
EMUD algorithm selects 14 heuristics to detect malicious 
or phishing URLs.

Our work differs from existing researches in that we focus 
on classifying emails into feature-request and non-feature-
request, which aims to benefit the release planning practices. 
In addition, our work complements the existing studies on 
automatic email classification.

8  Conclusion

In this paper, we presented an approach to predict whether 
a development email is requesting features. After tagging 
each sentence in emails with the semantic categories based 
on 81 fuzzy rules extracted from confirmed feature requests 
by our previous work, we obtained the semantic sequences 
for each email. We then applied sequence pattern mining 
together with objective optimization to generate a set of 10 
semantic sequence patterns.

To evaluate our approach, we conducted an empirical 
study on 248 emails from the Ubuntu community, which 
were not included in the training dataset. The results show 
that the 10 generated patterns can effectively identify feature 
requests from development emails while achieving differ-
ent objectives. To achieve high precision, the corresponding 
patterns range the precision from 59 to 100% by predicting 
less than 18% emails to be feature requests. To achieve high 
recall, the corresponding patterns range the recall from 53 
to 73% by keeping the AUC above 0.64.

We applied a state-of-the-art approach DECA and four 
machine learning approaches to classify the same 248 
emails, and compared the performances with three of the 10 
patterns we generated. The results show that compared with 
the five existing approaches, our approach outperformed in 
terms of precision, recall, F1-score, AUC, and positive.
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We believe that our contributions can make the feature 
requests easier to understand and analyze, and can help to 
discover feature requests from massive textual emails, thus 
improve feature request management in the open source 
communities, as well as contribute to crowd-based require-
ments engineering.
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